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10.1 OPERATING SYSTEM BASICS 
The operating system acts as a bridge between the user applications/tasks and the 

underlying system resources through a set of system functionalities and services. 

The OS manages the system resources and makes them available to the user 

applications/tasks on a need basis. A normal computing system is a collection of 

different I/O subsystems, working, and storage memory. The primary functions 

of an operating system is 

• Make the system convenient to use 

• Organise and manage the system resources efficiently and correctly 

Figure 10.1 gives an insight into the basic components of an operating system and their interfaces with 

rest of the world. 
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Fig. 10.1   The Operating System Architecture 

 

10.1.1 The Kernel 

The kernel is the core of the operating system and is responsible for managing the system resources and the 

communication among the hardware and other system services. Kernel acts as the abstraction layer between 

system resources and user applications. Kernel contains a set of system libraries and services. For a general 

purpose OS, the kernel contains different services for handling the following. 

Process Management Process management deals with managing the processes/tasks. Process management 

includes setting up the memory space for the process, loading the process’s code into the memory space, 

allocating system resources, scheduling and managing the execution of the process, setting up and managing 

the Process Control Block (PCB), Inter Process Communication and synchronisation, process termination/ 

deletion, etc. We will look into the description of process and process management in a later section of this 

chapter. 

Primary Memory Management The term primary memory refers to the volatile memory (RAM) where 

processes are loaded and variables and shared data associated with each process are stored. The Memory 

Management Unit (MMU) of the kernel is responsible for 

• Keeping track of which part of the memory area is currently used by which process 

• Allocating and De-allocating memory space on a need basis (Dynamic memory allocation). 
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File System Management  File is a collection of related information. A file could be a program (source code 

or executable), text files, image files, word documents, audio/video files, etc. Each of these files differ in the 

kind of information they hold and the way in which the information is stored. The file operation is a useful 

service provided by the OS. The file system management service of Kernel is responsible for 

• The creation, deletion and alteration of files 

• Creation, deletion and alteration of directories 

• Saving of files in the secondary storage memory (e.g. Hard disk storage) 

• Providing automatic allocation of file space based on the amount of free space available 

• Providing a flexible naming convention for the files 

The various file system management operations are OS dependent. For example, the kernel of Microsoft® 

DOS OS supports a specific set of file system management operations and they are not the same as the file 

system operations supported by UNIX Kernel. 

I/O System (Device) Management Kernel is responsible for routing the I/O requests coming from different 

user applications to the appropriate I/O devices of the system. In a well-structured OS, the direct accessing 

of I/O devices are not allowed and the access to them are provided through a set of Application Programming 

Interfaces (APIs) exposed by the kernel. The kernel maintains a list of all the I/O devices of the system. This 

list may be available in advance, at the time of building the kernel. Some kernels, dynamically updates the 

list of available devices as and when a new device is installed (e.g. Windows NT kernel keeps the list updated 

when a new plug ‘n’ play USB device is attached to the system). The service ‘Device Manager’ (Name may 

vary across different OS kernels) of the kernel is responsible for handling all I/O device related operations. 

The kernel talks to the I/O device through a set of low-level systems calls, which are implemented in a 

service, called device drivers. The device drivers are specific to a device or a class of devices. The Device 

Manager is responsible for 

• Loading and unloading of device drivers 

• Exchanging information and the system specific control signals to and from the device 

Secondary Storage Management The secondary storage management deals with managing the secondary 

storage memory devices, if any, connected to the system. Secondary memory is used as backup medium for 

programs and data since the main memory is volatile. In most of the systems, the secondary storage is kept in 

disks (Hard Disk). The secondary storage management service of kernel deals with 

• Disk storage allocation 

• Disk scheduling (Time interval at which the disk is activated to backup data) 

• Free Disk space management 

Protection Systems Most of the modern operating systems are designed in such a way to support multiple 

users with different levels of access permissions (e.g. Windows 10 with user permissions like ‘Administrator’, 

‘Standard’, ‘Restricted’, etc.). Protection deals with implementing the security policies to restrict the access 

to both user and system resources by different applications or processes or users. In multiuser supported 

operating systems, one user may not be allowed to view or modify the whole/portions of another user’s data 

or profile details. In addition, some application may not be granted with permission to make use of some of 

the system resources. This kind of protection is provided by the protection services running within the kernel. 

Interrupt Handler Kernel provides handler mechanism for all external/internal interrupts generated by the 

system. 

These are some of the important services offered by the kernel of an operating system. It does not mean 

that a kernel contains no more than components/services explained above. Depending on the type of the 
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operating system, a kernel may contain lesser number of components/services or more number of components/ 

services. In addition to the components/services listed above, many operating systems offer a number of add- 

on system components/services to the kernel. Network communication, network management, user-interface 

graphics, timer services (delays, timeouts, etc.), error handler, database management, etc. are examples for 

such components/services. Kernel exposes the interface to the various kernel applications/services, hosted by 

kernel, to the user applications through a set of standard Application Programming Interfaces (APIs). User 

applications can avail these API calls to access the various kernel application/services. 

10.1.1.1 Kernel Space and User Space 
As we discussed in the earlier section, the applications/services are classified into two categories, namely: 

user applications and kernel applications. The program code corresponding to the kernel applications/services 

are kept in a contiguous area (OS dependent) of primary (working) memory and is protected from the un- 

authorised access by user programs/applications. The memory space at which the kernel code is located is 

known as ‘Kernel Space’. Similarly, all user applications are loaded to a specific area of primary memory 

and this memory area is referred as ‘User Space’. User space is the memory area where user applications 

are loaded and executed. The partitioning of memory into kernel and user space is purely Operating System 

dependent. Some OS implements this kind of partitioning and protection whereas some OS do not segregate 

the kernel and user application code storage into two separate areas. In an operating system with virtual 

memory support, the user applications are loaded into its corresponding virtual memory space with demand 

paging technique; Meaning, the entire code for the user application need not be loaded to the main (primary) 

memory at once; instead the user application code is split into different pages and these pages are loaded into 

and out of the main memory area on a need basis. The act of loading the code into and out of the main memory 

is termed as ‘Swapping’. Swapping happens between the main (primary) memory and secondary storage 

memory. Each process run in its own virtual memory space and are not allowed accessing the memory space 

corresponding to another processes, unless explicitly requested by the process. Each process will have certain 

privilege levels on accessing the memory of other processes and based on the privilege settings, processes can 

request kernel to map another process’s memory to its own or share through some other mechanism. Most 

of the operating systems keep the kernel application code in main memory and it is not swapped out into the 

secondary memory. 

10.1.1.2 Monolithic Kernel and Microkernel 
As we know, the kernel forms the heart of an operating system. Different approaches are adopted for building 

an Operating System kernel. Based on the kernel design, kernels can be classified into ‘Monolithic’ and 

‘Micro’. 

Monolithic Kernel In monolithic kernel architecture, all 

kernel services run in the kernel space. Here all kernel 

modules run within the same memory space under a 

single kernel thread. The tight internal integration of 

kernel modules in monolithic kernel architecture allows 

the effective utilisation of the low-level features of the 

underlying system. The major drawback of monolithic 

kernel is that any error or failure in any one of the 

kernel modules leads to the crashing of the entire kernel 

application.    LINUX,    SOLARIS,    MS-DOS    kernels 

are examples of monolithic kernel. The architecture 

representation of a monolithic kernel is given in Fig. 10.2. Fig. 10.2   The Monolithic Kernel Model 

Applications 
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operating system services 
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Microkernel The microkernel design incorporates 

only the essential set of Operating System services 

into the kernel. The rest of the Operating System 

services are implemented in programs known as 

‘Servers’ which runs in user space. This provides a 

highly modular design and OS-neutral abstraction to 

the kernel. Memory management, process 

management, timer systems and interrupt handlers 

are the essential services, which forms the part of 

the microkernel. Mach, QNX, Minix 3 kernels are 

examples for microkernel. The architecture 

representation of a microkernel is   shown   in 

Fig. 10.3. 

Microkernel based design approach offers the 

following benefits 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 10.3  The Microkernel model 

• Robustness: If a problem is encountered in any 
of the services, which runs as ‘Server’ application, the same can be reconfigured and re-started without 

the need for re-starting the entire OS. Thus, this approach is highly useful for systems, which demands 

high ‘availability’. Refer Chapter 3 to get an understanding of ‘availability’. Since the services which 

run as ‘Servers’ are running on a different memory space, the chances of corruption of kernel services 

are ideally zero. 

• Configurability: Any services, which run as ‘Server’ application can be changed without the need to 
restart the whole system. This makes the system dynamically configurable. 

 

10.2 TYPES OF OPERATING SYSTEMS 

LO 2 Classify the 
types of operating 
systems 

Depending on the type of kernel and kernel services, purpose and type of 

computing systems where the OS is deployed and the responsiveness to 

applications, Operating Systems are classified into different types. 

10.2.1 General Purpose Operating System (GPOS) 

The operating systems, which are deployed in general computing systems, are referred as General Purpose 

Operating Systems (GPOS). The kernel of such an OS is more generalised and it contains all kinds of 

services required for executing generic applications. General-purpose operating systems are often quite 

non-deterministic in behaviour. Their services can inject random delays into application software and may 

cause slow responsiveness of an application at unexpected times. GPOS are usually deployed in computing 

systems where deterministic behaviour is not an important criterion. Personal Computer/Desktop system is 

a typical example for a system where GPOSs are deployed. Windows 10/8.x/XP/MS-DOS etc are examples 

for General Purpose Operating Systems. 
 

10.2.2 Real-Time Operating System (RTOS) 

There is no universal definition available for the term ‘Real-Time’ when it is used in conjunction with operating 

systems. What ‘Real-Time’ means in Operating System context is still a debatable topic and there are many 

definitions available. In a broad sense, ‘Real-Time’ implies deterministic timing behaviour. Deterministic 

timing behaviour in RTOS context means the OS services consumes only known and expected amounts of 

time regardless the number of services. A Real-Time Operating System or RTOS implements policies and 
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rules concerning time-critical allocation of a system’s resources. The RTOS decides which applications should 

run in which order and how much time needs to be allocated for each application. Predictable performance 

is the hallmark of a well-designed RTOS. This is best achieved by the consistent application of policies and 

rules. Policies guide the design of an RTOS. Rules implement those policies and resolve policy conflicts. 

Windows Embedded Compact, QNX, VxWorks MicroC/OS-II etc are examples of Real Time Operating 

Systems (RTOS). 

10.2.2.1 The Real-Time Kernel 
The kernel of a Real-Time Operating System is referred as Real. Time kernel. In complement to the 

conventional OS kernel, the Real-Time kernel is highly specialised and it contains only the minimal set of 

services required for running the user applications/tasks. The basic functions of a Real-Time kernel are listed 

below: 

• Task/Process management 

• Task/Process scheduling 

• Task/Process synchronisation 

• Error/Exception handling 

• Memory management 

• Interrupt handling 

• Time management 

Task/Process management Deals with setting up the memory space for the tasks, loading the task’s 

code into the memory space, allocating system resources, setting up a Task Control Block (TCB) for the 

task and task/process termination/deletion. A Task Control Block (TCB) is used for holding the information 

corresponding to a task. TCB usually contains the following set of information. 

Task ID:  Task Identification Number 

Task State: The current state of the task (e.g. State = ‘Ready’ for a task which is ready to execute) 

Task Type: Task type. Indicates what is the type for this task. The task can be a hard real time or soft real 

time or background task. 

Task Priority: Task priority (e.g. Task priority = 1 for task with priority = 1) 

Task Context Pointer: Context pointer. Pointer for context saving 

Task Memory Pointers: Pointers to the code memory, data memory and stack memory for the task 

Task System Resource Pointers: Pointers to system resources (semaphores, mutex, etc.) used by the task 

Task Pointers: Pointers to other TCBs (TCBs for preceding, next and waiting tasks) 

Other Parameters: Other relevant task parameters 

The parameters and implementation of the TCB is kernel dependent. The TCB parameters vary across 

different kernels, based on the task management implementation. Task management service utilises the TCB 

of a task in the following way 

• Creates a TCB for a task on creating a task 

• Delete/remove the TCB of a task when the task is terminated or deleted 

• Reads the TCB to get the state of a task 

• Update the TCB with updated parameters on need basis (e.g. on a context switch) 

• Modify the TCB to change the priority of the task dynamically 

Task/Process Scheduling Deals with sharing the CPU among various tasks/processes. A kernel application 

called ‘Scheduler’ handles the task scheduling. Scheduler is nothing but an algorithm implementation, which 
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performs the efficient and optimal scheduling of tasks to provide a deterministic behaviour. We will discuss 

the various types of scheduling in a later section of this chapter. 

Task/Process Synchronisation Deals with synchronising the concurrent access of a resource, which is 

shared across multiple tasks and the communication between various tasks. We will discuss the various 

synchronisation techniques and inter task /process communication in a later section of this chapter. 

Error/Exception Handling Deals with registering and handling the errors occurred/exceptions raised during 

the execution of tasks. Insufficient memory, timeouts, deadlocks, deadline missing, bus error, divide by zero, 

unknown instruction execution, etc. are examples of errors/exceptions. Errors/Exceptions can happen at the 

kernel level services or at task level. Deadlock is an example for kernel level exception, whereas timeout is 

an example for a task level exception. The OS kernel gives the information about the error in the form of a 

system call (API). GetLastError() API provided by Windows CE/Embedded Compact RTOS is an example 

for such a system call. Watchdog timer is a mechanism for handling the timeouts for tasks. Certain tasks may 

involve the waiting of external events from devices. These tasks will wait infinitely when the external device 

is not responding and the task will generate a hang-up behaviour. In order to avoid these types of scenarios, 

a proper timeout mechanism should be implemented. A watchdog is normally used in such situations. The 

watchdog will be loaded with the maximum expected wait time for the event and if the event is not triggered 

within this wait time, the same is informed to the task and the task is timed out. If the event happens before 

the timeout, the watchdog is resetted. 

Memory Management Compared to the General Purpose Operating Systems, the memory management 

function of an RTOS kernel is slightly different. In general, the memory allocation time increases 

depending on the size of the block of memory needs to be allocated and the state of the allocated memory 

block (initialised memory block consumes more allocation time than un-initialised memory block). Since 

predictable timing and deterministic behaviour are the primary focus of an RTOS, RTOS achieves this 

by compromising the effectiveness of memory allocation. RTOS makes use of ‘block’ based memory 

allocation technique, instead of the usual dynamic memory allocation techniques used by the GPOS. 

RTOS kernel uses blocks of fixed size of dynamic memory and the block is allocated for a task on a need 

basis. The blocks are stored in a ‘Free Buffer Queue’. To achieve predictable timing and avoid the timing 

overheads, most of the RTOS kernels allow tasks to access any of the memory blocks without any memory 

protection. RTOS kernels assume that the whole design is proven correct and protection is unnecessary. 

Some commercial RTOS kernels allow memory protection as optional and the kernel enters a fail-safe 

mode when an illegal memory access occurs. 

A few RTOS kernels implement Virtual Memory* concept for memory allocation if the system supports 

secondary memory storage (like HDD and FLASH memory). In the ‘block’ based memory allocation, a block 

of fixed memory is always allocated for tasks on need basis and it is taken as a unit. Hence, there will not 

be any memory fragmentation issues. The memory allocation can be implemented as constant functions and 

thereby it consumes fixed amount of time for memory allocation. This leaves the deterministic behaviour of 

the RTOS kernel untouched. The ‘block’ memory concept avoids the garbage collection overhead also. (We 

will explore this technique under the MicroC/OS-II kernel in a latter chapter).The ‘block’ based memory 
 

* Virtual Memory is an imaginary memory supported by certain operating systems. Virtual memory expands the address space available 

to a task beyond the actual physical memory (RAM) supported by the system. Virtual memory is implemented with the help of a 

Memory Management Unit (MMU) and ‘memory paging’. The program memory for a task can be viewed as different pages and the 

page corresponding to a piece of code that needs to be executed is loaded into the main physical memory (RAM). When a memory page 

is no longer required, it is moved out to secondary storage memory and another page which contains the code snippet to be executed is 

loaded into the main memory. This memory movement technique is known as demand paging. The MMU handles the demand paging 

and converts the virtual address of a location in a page to corresponding physical address in the RAM. 
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allocation achieves deterministic behaviour with the trade-of limited choice of memory chunk size and 

suboptimal memory usage. 

Interrupt Handling Deals with the handling of various types of interrupts. Interrupts provide Real-Time 

behaviour to systems. Interrupts inform the processor that an external device or an associated task requires 

immediate attention of the CPU. Interrupts can be either Synchronous or Asynchronous. Interrupts which 

occurs in sync with the currently executing task is known as Synchronous interrupts. Usually the software 

interrupts fall under the Synchronous Interrupt category. Divide by zero, memory segmentation error, etc. are 

examples of synchronous interrupts. For synchronous interrupts, the interrupt handler runs in the same context 

of the interrupting task. Asynchronous interrupts are interrupts, which occurs at any point of execution of any 

task, and are not in sync with the currently executing task. The interrupts generated by external devices (by 

asserting the interrupt line of the processor/controller to which the interrupt line of the device is connected) 

connected to the processor/controller, timer overflow interrupts, serial data reception/ transmission interrupts, 

etc. are examples for asynchronous interrupts. For asynchronous interrupts, the interrupt handler is usually 

written as separate task (Depends on OS kernel implementation) and it runs in a different context. Hence, 

a context switch happens while handling the asynchronous interrupts. Priority levels can be assigned to the 

interrupts and each interrupts can be enabled or disabled individually. Most of the RTOS kernel implements 

‘Nested Interrupts’ architecture. Interrupt nesting allows the pre-emption (interruption) of an Interrupt Service 

Routine (ISR), servicing an interrupt, by a high priority interrupt. 

Time Management Accurate time management is essential for providing precise time reference for all 

applications. The time reference to kernel is provided by a high-resolution Real-Time Clock (RTC) hardware 

chip (hardware timer). The hardware timer is programmed to interrupt the processor/controller at a fixed rate. 

This timer interrupt is referred as ‘Timer tick’. The ‘Timer tick’ is taken as the timing reference by the kernel. 

The ‘Timer tick’ interval may vary depending on the hardware timer. Usually the ‘Timer tick’ varies in the 

microseconds range. The time parameters for tasks are expressed as the multiples of the ‘Timer tick’. 

The System time is updated based on the ‘Timer tick’. If the System time register is 32 bits wide and the 

‘Timer tick’ interval is 1 microsecond, the System time register will reset in 

232 * 10–6/ (24 * 60 * 60) = 49700 Days = ~ 0.0497 Days = 1.19 Hours 

If the ‘Timer tick’ interval is 1 millisecond, the system time register will reset in 

232 * 10–3 / (24 * 60 * 60) = 497 Days = 49.7 Days = ~ 50 Days 

The ‘Timer tick’ interrupt is handled by the ‘Timer Interrupt’ handler of kernel. The ‘Timer tick’ interrupt 

can be utilised for implementing the following actions. 

• Save the current context (Context of the currently executing task). 
• Increment the System time register by one. Generate timing error and reset the System time register if 

the timer tick count is greater than the maximum range available for System time register. 

• Update the timers implemented in kernel (Increment or decrement the timer registers for each timer 

depending on the count direction setting for each register. Increment registers with count direction 

setting = ‘count up’ and decrement registers with count direction setting = ‘count down’). 

• Activate the periodic tasks, which are in the idle state. 

• Invoke the scheduler and schedule the tasks again based on the scheduling algorithm. 

• Delete all the terminated tasks and their associated data structures (TCBs) 
• Load the context for the first task in the ready queue. Due to the re-scheduling, the ready task might be 

changed to a new one from the task, which was preempted by the ‘Timer Interrupt’ task. 

Apart from these basic functions, some RTOS provide other functionalities also (Examples are file 

management and network functions). Some RTOS kernel provides options for selecting the required kernel 
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functions at the time of building a kernel. The user can pick the required functions from the set of available 

functions and compile the same to generate the kernel binary. Windows CE is a typical example for such an 

RTOS. While building the target, the user can select the required components for the kernel. 

10.2.2.2 Hard Real-Time 
Real-Time Operating Systems that strictly adhere to the timing constraints for a task is referred as ‘Hard 

Real-Time’ systems. A Hard Real-Time system must meet the deadlines for a task without any slippage. 

Missing any deadline may produce catastrophic results for Hard Real-Time Systems, including permanent 

data lose and irrecoverable damages to the system/users. Hard Real-Time systems emphasise the principle ‘A 

late answer is a wrong answer’. A system can have several such tasks and the key to their correct operation 

lies in scheduling them so that they meet their time constraints. Air bag control systems and Anti-lock Brake 

Systems (ABS) of vehicles are typical examples for Hard Real-Time Systems. The Air bag control system 

should be into action and deploy the air bags when the vehicle meets a severe accident. Ideally speaking, the 

time for triggering the air bag deployment task, when an accident is sensed by the Air bag control system, 

should be zero and the air bags should be deployed exactly within the time frame, which is predefined for 

the air bag deployment task. Any delay in the deployment of the air bags makes the life of the passengers 

under threat. When the air bag deployment task is triggered, the currently executing task must be pre-empted, 

the air bag deployment task should be brought into execution, and the necessary I/O systems should be 

made readily available for the air bag deployment task. To meet the strict deadline, the time between the 

air bag deployment event triggering and start of the air bag deployment task execution should be minimum, 

ideally zero. As a rule of thumb, Hard Real-Time Systems does not implement the virtual memory model for 

handling the memory. This eliminates the delay in swapping in and out the code corresponding to the task 

to and from the primary memory. In general, the presence of Human in the loop (HITL) for tasks introduces 

unexpected delays in the task execution. Most of the Hard Real-Time Systems are automatic and does not 

contain a ‘human in the loop’. 

10.2.2.3 Soft Real-Time 
Real-Time Operating System that does not guarantee meeting deadlines, but offer the best effort to meet the 

deadline are referred as ‘Soft Real-Time’ systems. Missing deadlines for tasks are acceptable for a Soft Real- 

time system if the frequency of deadline missing is within the compliance limit of the Quality of Service 

(QoS). A Soft Real-Time system emphasises the principle ‘A late answer is an acceptable answer, but it could 

have done bit faster’. Soft Real-Time systems most often have a ‘human in the loop (HITL)’. Automatic Teller 

Machine (ATM) is a typical example for Soft-Real-Time System. If the ATM takes a few seconds more than 

the ideal operation time, nothing fatal happens. An audio-video playback system is another example for Soft 

Real-Time system. No potential damage arises if a sample comes late by fraction of a second, for playback. 

 

10.3 TASKS, PROCESS AND THREADS 
The term ‘task’ refers to something that needs to be done. In our day-to-day life, 

we are bound to the execution of a number of tasks. The task can be the one 

assigned by our managers or the one assigned by our professors/teachers or the 

one related to our personal or family needs. In addition, we will have an order of 

priority and schedule/timeline for executing these tasks. In the operating system 

context, a task is defined as the program in execution and the related information 

maintained by the operating system for the program. Task is also known as ‘Job’ in the operating system 

context. A program or part of it in execution is also called a ‘Process’. The terms ‘Task’, ‘Job’ and ‘Process’ 

refer to the same entity in the operating system context and most often they are used interchangeably. 

LO 3 Discuss 
tasks, processes 
and threads in the 
operating system 

context 
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10.3.1 Process 

A ‘Process’ is a program, or part of it, in execution. Process is also known as an instance of a program in 

execution. Multiple instances of the same program can execute simultaneously. A process requires various 

system resources like CPU for executing the process, memory for storing the code corresponding to the process 

and associated variables, I/O devices for information exchange, etc. A process is sequential in execution. 

10.3.1.1 The Structure of a Process 
The concept of ‘Process’ leads to concurrent execution (pseudo parallelism) of tasks and thereby the efficient 

utilisation of the CPU and other system resources. Concurrent execution is achieved through the sharing of 

CPU among the processes. A process mimics a processor in properties and holds a set of registers, process 

status, a Program Counter (PC) to point to the next executable instruction of the process, a stack for holding the 

local variables associated with the process and the code corresponding to the process. This can be visualised 

as shown in Fig. 10.4. 

A process which inherits all the properties of the CPU can be considered as a virtual processor, awaiting 

its turn to have its properties switched into the physical processor. When the process gets its turn, its registers 

and the program counter register becomes mapped to the physical registers of the CPU. From a memory 

perspective, the memory occupied by the process is segregated into three regions, namely, Stack memory, 

Data memory and Code memory (Fig. 10.5). 
 

Fig. 10.4  Structure of a Process Fig. 10.5 Memory organisation of a Process 

 
The ‘Stack’ memory holds all temporary data such as variables local to the process. Data memory holds 

all global data for the process. The code memory contains the program code (instructions) corresponding 

to the process. On loading a process into the main memory, a specific area of memory is allocated for the 

process. The stack memory usually starts (OS Kernel implementation dependent) at the highest memory 

address from the memory area allocated for the process. Say for example, the memory map of the memory 

area allocated for the process is 2048 to 2100, the stack memory starts at address 2100 and grows downwards 

to accommodate the variables local to the process. 
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10.3.1.2 Process States and State Transition 
The creation of a process to its termination is not 

a single step operation. The process traverses 

through a series of states during its transition from 

the newly created state to the terminated state. The 

cycle through which a process changes its state from 

‘newly created’ to ‘execution completed’ is known 

as ‘Process Life Cycle’. The various states through 

which a process traverses through during a Process 

Life Cycle indicates the current status of the process 

with respect to time and also provides information on 

what it is allowed to do next. Figure 10.6 represents 

the various states associated with a process. 

The state at which a process is being created is 

referred as ‘Created State’. The Operating System 

recognises a process in the ‘Created State’ but no 

resources are allocated to the process. The state, 

where a process is incepted into the memory and 

awaiting the processor time for execution, is known 

as ‘Ready State’. At this stage, the process is placed 

in the ‘Ready list’ queue maintained by the OS. 

The state where in the source code instructions 

corresponding to the process is being executed is 

called ‘Running State’. Running state is the state 

at which the process execution happens. ‘Blocked 
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State/Wait State’ refers to a state where a running 

process is temporarily suspended from execution 
Fig. 10.6  Process states and state transition representation 

and does not have immediate access to resources. The blocked state might be invoked by various conditions 

like: the process enters a wait state for an event to occur (e.g. Waiting for user inputs such as keyboard input) 

or waiting for getting access to a shared resource (will be discussed at a later section of this chapter). A state 

where the process completes its execution is known as ‘Completed State’. The transition of a process from 

one state to another is known as ‘State transition’. When a process changes its state from Ready to running 

or from running to blocked or terminated or from blocked to running, the CPU allocation for the process may 

also change. 

It should be noted that the state representation for a process/task mentioned here is a generic representation. 

The states associated with a task may be known with a different name or there may be more or less number 

of states than the one explained here under different OS kernel. For example, under VxWorks’ kernel, the 

tasks may be in either one or a specific combination of the states READY, PEND, DELAY and SUSPEND. 

The PEND state represents a state where the task/process is blocked on waiting for I/O or system resource. 

The DELAY state represents a state in which the task/process is sleeping and the SUSPEND state represents 

a state where a task/process is temporarily suspended from execution and not available for execution. Under 

MicroC/OS-II kernel, the tasks may be in one of the states, DORMANT, READY, RUNNING, WAITING 

or INTERRUPTED. The DORMANT state represents the ‘Created’ state and WAITING state represents the 

state in which a process waits for shared resource or I/O access. We will discuss about the states and state 

transition for tasks under VxWorks and uC/OS-II kernel in a later chapter. 
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10.3.1.3 Process Management 
Process management deals with the creation of a process, setting up the memory space for the process, loading 

the process’s code into the memory space, allocating system resources, setting up a Process Control Block 

(PCB) for the process and process termination/deletion. For more details on Process Management, refer to the 

section ‘Task/Process management’ given under the topic ‘The Real-Time Kernel’ of this chapter. 
 

10.3.2 Threads 

A thread is the primitive that can execute code. A 

thread is a single sequential flow of control within 

a process. ‘Thread’ is also known as lightweight 

process. A process can have many threads of 

execution. Different threads, which are part of a 

process, share the same address space; meaning 

they share the data memory, code memory and heap 

memory area. Threads maintain their own thread 

status (CPU register values), Program Counter (PC) 

and stack. The memory model for a process and its 

associated threads are given in Fig. 10.7. 

10.3.2.1 The Concept of Multithreading 

A process/task in embedded application may be a 

complex or lengthy one and it may contain various 

Fig. 10.7  Memory organisation of a Process and its 
associated Threads 

suboperations like getting input from I/O devices connected to the processor, performing some internal 

calculations/operations, updating some I/O devices etc. If all the subfunctions of a task are executed in 

sequence, the CPU utilisation may not be efficient. For example, if the process is waiting for a user input, 

the CPU enters the wait state for the event, and the process execution also enters a wait state. Instead of this 

single sequential execution of the whole process, if the task/process is split into different threads carrying 

out the different subfunctionalities of the process, the CPU can be effectively utilised and when the thread 

corresponding to the I/O operation enters the wait state, another threads which do not require the I/O event 

for their operation can be switched into execution. This leads to more speedy execution of the process and 

the efficient utilisation of the processor time and resources. The multithreaded architecture of a process can 

be better visualised with the thread-process diagram shown in Fig. 10.8. 

If the process is split into multiple threads, which executes a portion of the process, there will be a main 

thread and rest of the threads will be created within the main thread. Use of multiple threads to execute a 

process brings the following advantage. 

• Better memory utilisation. Multiple threads of the same process share the address space for data 

memory. This also reduces the complexity of inter thread communication since variables can be shared 

across the threads. 

• Since the process is split into different threads, when one thread enters a wait state, the CPU can be 

utilised by other threads of the process that do not require the event, which the other thread is waiting, 

for processing. This speeds up the execution of the process. 

• Efficient CPU utilisation. The CPU is engaged all time. 
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Fig. 10.8  Process with multi-threads 

Task/Process 

Thread 3 

int ChildThread 2 

(void) 

{ 

//Do something 

 

 
} 

Thread 2 

int ChildThread 1 

(void) 

{ 

//Do something 

 

 
} 

Thread 1 

void main (void) 

{ 

//Create child 

thread 1 

CreateThread (NULL, 

1000,(LPTHREAD_STA 

RT_ROUTINE ) 

ChildThread 1,NULL, 

0, &dwThreadID ); 

//Create child 

thread 2 

CreateThread (NULL, 

1000,(LPTHREAD_STA 

RT_ROUTINE ) 

ChildThread 2,NULL, 

0, &dwThreadID ); 

} 
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10.3.2.2 Thread v/s Process 

 

Thread Process 

Thread is a single unit of execution and is part of process. Process is a program in execution and contains one or 

more threads. 

A thread does not have its own data memory and heap 

memory. It shares the data memory and heap memory with 

other threads of the same process. 

Process has its own code memory, data memory and stack 

memory. 

 

A thread cannot live independently; it lives within the 

process. 

A process contains at least one thread. 

There can be multiple threads in a process. The first thread 

(main thread) calls the main function and occupies the start 

of the stack memory of the process. 

Threads within a process share the code, data and heap 

memory. Each thread holds separate memory area for stack 

(shares the total stack memory of the process). 

Threads are very inexpensive to create Processes are very expensive to create. Involves many OS 

overhead. 

Context switching is inexpensive and fast Context switching is complex and involves lot of OS over- 

head and is comparatively slower. 

If a thread expires, its stack is reclaimed by the process. If a process dies, the resources allocated to it are reclaimed 

by the OS and all the associated threads of the process 

also dies. 

 

10.4 MULTIPROCESSING AND MULTITASKING 
The terms multiprocessing and multitasking are a little confusing and sounds alike. 

In the operating system context multiprocessing describes the ability to execute 

multiple processes simultaneously. Systems which are capable of performing 

multiprocessing, are known as multiprocessor systems. Multiprocessor systems 

possess multiple CPUs and can execute multiple processes simultaneously. 

The ability of the operating system to have multiple programs in memory, 

which are ready for execution, is referred as multiprogramming. In a uniprocessor system, it is not possible 

to execute multiple processes simultaneously. However, it is possible for a uniprocessor system to achieve 

some degree of pseudo parallelism in the execution of multiple processes by switching the execution among 

different processes. The ability of an operating system to hold multiple processes in memory and switch 

the processor (CPU) from executing one process to another process is known as multitasking. Multitasking 

creates the illusion of multiple tasks executing in parallel. Multitasking involves the switching of CPU from 

executing one task to another. In an earlier section ‘The Structure of a Process’ of this chapter, we learned 

that a Process is identical to the physical processor in the sense it has own register set which mirrors the 

CPU registers, stack and Program Counter (PC). Hence, a ‘process’ is considered as a ‘Virtual processor’, 

awaiting its turn to have its properties switched into the physical processor. In a multitasking environment, 

when task/process switching happens, the virtual processor (task/process) gets its properties converted into 

that of the physical processor. The switching of the virtual processor to physical processor is controlled by the 

scheduler of the OS kernel. Whenever a CPU switching happens, the current context of execution should be 

saved to retrieve it at a later point of time when the CPU executes the process, which is interrupted currently 

due to execution switching. The context saving and retrieval is essential for resuming a process exactly from 

the point where it was interrupted due to CPU switching. The act of switching CPU among the processes or 

changing the current execution context is known as ‘Context switching’. The act of saving the current context 
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which contains the context details (Register details, memory details, system resource usage details, execution 

details, etc.) for the currently running process at the time of CPU switching is known as ‘Context saving’. 

The process of retrieving the saved context details for a process, which is going to be executed due to CPU 

switching, is known as ‘Context retrieval’. Multitasking involves ‘Context switching’ (Fig. 10.11), ‘Context 

saving’ and ‘Context retrieval’. 

Toss Juggling The skilful object manipulation game is a classic real world example for the multitasking 

illusion. The juggler uses a number of objects (balls, rings, etc.) and throws them up and catches them. At 
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Idle 

 
Running 

Delay in execution of 

Process 2 happened 

due to ‘Context 

Switching’ 

Delay in execution of 

Process 1 happened 

due to ‘Context 

Switching’ 

Time 

Running Idle Waits in ‘Ready’ Queue Running 

Waits in ‘Ready’ Queue Running Idle 

 

any point of time, he throws only one ball and catches only one per hand. However, the speed at which he is 
switching the balls for throwing and catching creates the illusion, he is throwing and catching multiple balls 

or using more than two hands ☺ simultaneously, to the spectators. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Process 2 

 
 

Process 1 

 

Fig. 10.11 Context switching 

 

10.4.1 Types of Multitasking 

As we discussed earlier, multitasking involves the switching of execution among multiple tasks. Depending 

on how the switching act is implemented, multitasking can be classified into different types. The following 

section describes the various types of multitasking existing in the Operating System’s context. 

10.4.1.1 Co-operative Multitasking 
Co-operative multitasking is the most primitive form of multitasking in which a task/process gets a chance to 

execute only when the currently executing task/process voluntarily relinquishes the CPU. In this method, any 

task/process can hold the CPU as much time as it wants. Since this type of implementation involves the mercy 

of the tasks each other for getting the CPU time for execution, it is known as co-operative multitasking. If the 

currently executing task is non-cooperative, the other tasks may have to wait for a long time to get the CPU. 

10.4.1.2 Preemptive Multitasking 
Preemptive multitasking ensures that every task/process gets a chance to execute. When and how much time 

a process gets is dependent on the implementation of the preemptive scheduling. As the name indicates, in 

preemptive multitasking, the currently running task/process is preempted to give a chance to other tasks/ 

process to execute. The preemption of task may be based on time slots or task/process priority. 

10.4.1.3 Non-preemptive Multitasking 
In non-preemptive multitasking, the process/task, which is currently given the CPU time, is allowed to 

execute until it terminates (enters the ‘Completed’ state) or enters the ‘Blocked/Wait’ state, waiting for an I/O 
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or system resource. The co-operative and non-preemptive multitasking differs in their behaviour when they 

are in the ‘Blocked/Wait’ state. In co-operative multitasking, the currently executing process/task need not 

relinquish the CPU when it enters the ‘Blocked/Wait’ state, waiting for an I/O, or a shared resource access or 

an event to occur whereas in non-preemptive multitasking the currently executing task relinquishes the CPU 

when it waits for an I/O or system resource or an event to occur. 

 

10.5 TASK SCHEDULING 
As we already discussed, multitasking involves the execution switching among 

the different tasks. There should be some mechanism in place to share the CPU 

among the different tasks and to decide which process/task is to be executed at a 

given point of time. Determining which task/process is to be executed at a given 

point of time is known as task/process scheduling. Task scheduling forms the 

basis of multitasking. Scheduling policies forms the guidelines for determining 

which task is to be executed when. The scheduling policies are implemented in an 

algorithm and it is run by the kernel as a service. The kernel service/application, 

which implements the scheduling algorithm, is known as ‘Scheduler’. The process scheduling decision may 

take place when a process switches its state to 

1. ‘Ready’ state from ‘Running’ state 

2. ‘Blocked/Wait’ state from ‘Running’ state 

3. ‘Ready’ state from ‘Blocked/Wait’ state 

4. ‘Completed’ state 

A process switches to ‘Ready’ state from the ‘Running’ state when it is preempted. Hence, the type of 

scheduling in scenario 1 is pre-emptive. When a high priority process in the ‘Blocked/Wait’ state completes 

its I/O and switches to the ‘Ready’ state, the scheduler picks it for execution if the scheduling policy used is 

priority based preemptive. This is indicated by scenario 3. In preemptive/non-preemptive multitasking, the 

process relinquishes the CPU when it enters the ‘Blocked/Wait’ state or the ‘Completed’ state and switching 

of the CPU happens at this stage. Scheduling under scenario 2 can be either preemptive or non-preemptive. 

Scheduling under scenario 4 can be preemptive, non-preemptive or co-operative. 

The selection of a scheduling criterion/algorithm should consider the following factors: 

CPU Utilisation: The scheduling algorithm should always make the CPU utilisation high. CPU utilisation is 

a direct measure of how much percentage of the CPU is being utilised. 

Throughput: This gives an indication of the number of processes executed per unit of time. The throughput 

for a good scheduler should always be higher. 

Turnaround Time: It is the amount of time taken by a process for completing its execution. It includes the 

time spent by the process for waiting for the main memory, time spent in the ready queue, time spent on 

completing the I/O operations, and the time spent in execution. The turnaround time should be a minimal for 

a good scheduling algorithm. 

Waiting Time: It is the amount of time spent by a process in the ‘Ready’ queue waiting to get the CPU time 

for execution. The waiting time should be minimal for a good scheduling algorithm. 

Response Time: It is the time elapsed between the submission of a process and the first response. For a good 

scheduling algorithm, the response time should be as least as possible. 

LO 5 Describe 
the FCFS/FIFO, 
LCFS/LIFO, SJF 
and priority based 
task/process 

scheduling 

To summarise, a good scheduling algorithm has high CPU utilisation, minimum Turn Around Time 

(TAT), maximum throughput and least response time. 
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The Operating System maintains various queues† in connection with the CPU scheduling, and a process 

passes through these queues during the course of its admittance to execution completion. 

The various queues maintained by OS in association with CPU scheduling are: 

Job Queue: Job queue contains all the processes in the system 

Ready Queue: Contains all the processes, which are ready for execution and waiting for CPU to get their 

turn for execution. The Ready queue is empty when there is no process ready for running. 

Device Queue: Contains the set of processes, which are waiting for an I/O device. 

A process migrates through all these queues during its journey from ‘Admitted’ to ‘Completed’ stage. The 

following diagrammatic representation (Fig. 10.12) illustrates the transition of a process through the various 

queues. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 10.12 Illustration of process transition through various queues 

 
Based on the scheduling algorithm used, the scheduling can be classified into the following categories. 

 

10.5.1 Non-preemptive Scheduling 

Non-preemptive scheduling is employed in systems, which implement non-preemptive multitasking model. 

In this scheduling type, the currently executing task/process is allowed to run until it terminates or enters the 

‘Wait’ state waiting for an I/O or system resource. The various types of non-preemptive scheduling adopted 

in task/process scheduling are listed below. 

 
† Queue is a special kind of arrangement of a collection of objects. In the operating system context queue is considered as a buffer. 
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10.5.1.1 First-Come-First-Served (FCFS)/ FIFO Scheduling 
As the name indicates, the First-Come-First-Served (FCFS) scheduling algorithm allocates CPU time to the 

processes based on the order in which they enter the ‘Ready’ queue. The first entered process is serviced first. 

It is same as any real world application where queue systems are used; e.g. Ticketing reservation system 

where people need to stand in a queue and the first person standing in the queue is serviced first. FCFS 

scheduling is also known as First In First Out (FIFO) where the process which is put first into the ‘Ready’ 

queue is serviced first. 

 

Example 1 

Three processes with process IDs P1, P2, P3 with estimated completion time 10, 5, 7 milliseconds respectively 

enters the ready queue together in the order P1, P2, P3. Calculate the waiting time and Turn Around Time 

(TAT) for each process and the average waiting time and Turn Around Time (Assuming there is no I/O 

waiting for the processes). 

The sequence of execution of the processes by the CPU is represented as 
 

 
P1 

 
P2 

 
P3 

0 10 15 22 

10 5 7 

 

Assuming the CPU is readily available at the time of arrival of P1, P1 starts executing without any waiting in 

the ‘Ready’ queue. Hence the waiting time for P1 is zero. The waiting time for all processes are given as 

Waiting Time for P1 = 0 ms (P1 starts executing first) 

Waiting Time for P2 = 10 ms (P2 starts executing after completing P1) 

Waiting Time for P3 = 15 ms (P3 starts executing after completing P1 and P2) 

Average waiting time = (Waiting time for all processes) / No. of Processes 

= (Waiting time for (P1+P2+P3)) / 3 

= (0+10+15)/3 = 25/3 

= 8.33 milliseconds 

Turn Around Time (TAT) for P1 = 10 ms (Time spent in Ready Queue + Execution Time) 

Turn Around Time (TAT) for P2 = 15 ms (-Do-) 

Turn Around Time (TAT) for P3 = 22 ms (-Do-) 

Average Turn Around Time = (Turn Around Time for all processes) / No. of Processes 

= (Turn Around Time for (P1+P2+P3)) / 3 

= (10+15+22)/3 = 47/3 

= 15.66 milliseconds 

Average Turn Around Time (TAT) is the sum of average waiting time and average execution time. 

Average Execution Time = (Execution time for all processes)/No. of processes 

= (Execution time for (P1+P2+P3))/3 

= (10+5+7)/3 = 22/3 

= 7.33 

Average Turn Around Time = Average waiting time + Average execution time 

= 8.33 + 7.33 

= 15.66 milliseconds 
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Example 2 

Calculate the waiting time and Turn Around Time (TAT) for each process and the Average waiting time and 
Turn Around Time (Assuming there is no I/O waiting for the processes) for the above example if the process 
enters the ‘Ready’ queue together in the order P2, P1, P3. 

The sequence of execution of the processes by the CPU is represented as 
 

 
P2 

 
P1 

 
P3 

 

0 5 

5 10 

15 22 

7 
 

Assuming the CPU is readily available at the time of arrival of P2, P2 starts executing without any waiting in 
the ‘Ready’ queue. Hence the waiting time for P2 is zero. The waiting time for all processes is given as 
Waiting Time for P2 = 0 ms (P2 starts executing first) 
Waiting Time for P1 = 5 ms (P1 starts executing after completing P2) 
Waiting Time for P3 = 15 ms (P3 starts executing after completing P2 and P1) 
Average waiting time = (Waiting time for all processes) / No. of Processes 

= (Waiting time for (P2+P1+P3)) / 3 
= (0+5+15)/3 = 20/3 
= 6.66 milliseconds 

Turn Around Time (TAT) for P2 = 5 ms (Time spent in Ready Queue + Execution Time) 
Turn Around Time (TAT) for P1 = 15 ms (-Do-) 
Turn Around Time (TAT) for P3 = 22 ms (-Do-) 
Average Turn Around Time = (Turn Around Time for all processes) / No. of Processes 

= (Turn Around Time for (P2+P1+P3)) / 3 
= (5+15+22)/3 = 42/3 
= 14 milliseconds 

The Average waiting time and Turn Around Time (TAT) depends on the order in which the processes 

enter the ‘Ready’ queue, regardless there estimated completion time. 

From the above two examples it is clear that the Average waiting time and Turn Around Time improve if 

the process with shortest execution completion time is scheduled first. 

The major drawback of FCFS algorithm is that it favours monopoly of process. A process, which does 

not contain any I/O operation, continues its execution until it finishes its task. If the process contains any 

I/O operation, the CPU is relinquished by the process. In general, FCFS favours CPU bound processes and 

I/O bound processes may have to wait until the completion of CPU bound process, if the currently executing 

process is a CPU bound process. This leads to poor device utilisation. The average waiting time is not 

minimal for FCFS scheduling algorithm. 

10.5.1.2 Last-Come-First Served (LCFS)/LIFO Scheduling 
The Last-Come-First Served (LCFS) scheduling algorithm also allocates CPU time to the processes based 

on the order in which they are entered in the ‘Ready’ queue. The last entered process is serviced first. LCFS 

scheduling is also known as Last In First Out (LIFO) where the process, which is put last into the ‘Ready’ 

queue, is serviced first. 
 

Example 1 

Three processes with process IDs P1, P2, P3 with estimated completion time 10, 5, 7 milliseconds respectively 

enters the ready queue together in the order P1, P2, P3 (Assume only P1 is present in the ‘Ready’ queue when 
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the scheduler picks it up and P2, P3 entered ‘Ready’ queue after that). Now a new process P4 with estimated 

completion time 6 ms enters the ‘Ready’ queue after 5 ms of scheduling P1. Calculate the waiting time and 

Turn Around Time (TAT) for each process and the Average waiting time and Turn Around Time (Assuming 

there is no I/O waiting for the processes). Assume all the processes contain only CPU operation and no I/O 

operations are involved. 

Initially there is only P1 available in the Ready queue and the scheduling sequence will be P1, P3, P2. P4 

enters the queue during the execution of P1 and becomes the last process entered the ‘Ready’ queue. Now the 

order of execution changes to P1, P4, P3, and P2 as given below. 
 

 

P1 
 

P4 
 

P3 
 

P2 

0 10 16 23 28 

10 6 7 5 

The waiting time for all the processes is given as 

Waiting Time for P1 = 0 ms (P1 starts executing first) 

Waiting Time for P4 = 5 ms (P4 starts executing after completing P1. But P4 arrived after 5 ms of execution of 

P1. Hence its waiting time = Execution start time – Arrival Time = 10 – 5 = 5) 

Waiting Time for P3 = 16 ms (P3 starts executing after completing P1 and P4) 

Waiting Time for P2 = 23 ms (P2 starts executing after completing P1, P4 and P3) 

Average waiting time = (Waiting time for all processes) / No. of Processes 

= (Waiting time for (P1+P4+P3+P2)) / 4 

= (0 + 5 + 16 + 23)/4 = 44/4 

= 11 milliseconds 

Turn Around Time (TAT) for P1 = 10 ms (Time spent in Ready Queue + Execution Time) 

Turn Around Time (TAT) for P4 = 11 ms (Time spent in Ready Queue + Execution Time = (Execution 

Start Time – Arrival Time) + Estimated Execution Time = (10 

– 5) + 6 = 5 + 6) 

Turn Around Time (TAT) for P3 = 23 ms (Time spent in Ready Queue + Execution Time) 

Turn Around Time (TAT) for P2 = 28 ms (Time spent in Ready Queue + Execution Time) 

Average Turn Around Time = (Turn Around Time for all processes) / No. of Processes 

= (Turn Around Time for (P1+P4+P3+P2)) / 4 

= (10+11+23+28)/4 = 72/4 

= 18 milliseconds 

LCFS scheduling is not optimal and it also possesses the same drawback as that of FCFS algorithm. 

10.5.1.3 Shortest Job First (SJF) Scheduling 
Shortest Job First (SJF) scheduling algorithm ‘sorts the ‘Ready’ queue’ each time a process relinquishes the 

CPU (either the process terminates or enters the ‘Wait’ state waiting for I/O or system resource) to pick the 

process with shortest (least) estimated completion/run time. In SJF, the process with the shortest estimated 

run time is scheduled first, followed by the next shortest process, and so on. 

 

Example 1 

Three processes with process IDs P1, P2, P3 with estimated completion time 10, 5, 7 milliseconds respectively 

enters the ready queue together. Calculate the waiting time and Turn Around Time (TAT) for each process 
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and the Average waiting time and Turn Around Time (Assuming there is no I/O waiting for the processes) in 

SJF algorithm. 

The scheduler sorts the ‘Ready’ queue based on the shortest estimated completion time and schedules the 

process with the least estimated completion time first and the next least one as second, and so on. The order 

in which the processes are scheduled for execution is represented as 

 

 
P2 

 
P3 

 
P1 

0 5 12 22 

5 7 10 

 

The estimated execution time of P2 is the least (5 ms) followed by P3 (7 ms) and P1 (10 ms). 

The waiting time for all processes are given as 

Waiting Time for P2 = 0 ms (P2 starts executing first) 

Waiting Time for P3 = 5 ms (P3 starts executing after completing P2) 

Waiting Time for P1 = 12 ms (P1 starts executing after completing P2 and P3) 

Average waiting time = (Waiting time for all processes) / No. of Processes 

= (Waiting time for (P2+P3+P1)) / 3 

= (0+5+12)/3 = 17/3 

= 5.66 milliseconds 

Turn Around Time (TAT) for P2 = 5 ms (Time spent in Ready Queue + Execution Time) 

Turn Around Time (TAT) for P3 = 12 ms (-Do-) 

Turn Around Time (TAT) for P1 = 22 ms (-Do-) 

Average Turn Around Time = (Turn Around Time for all processes) / No. of Processes 

= (Turn Around Time for (P2+P3+P1)) / 3 

= (5+12+22)/3 = 39/3 

= 13 milliseconds 

Average Turn Around Time (TAT) is the sum of average waiting time and average execution time. 

The average Execution time = (Execution time for all processes)/No. of processes 

= (Execution time for (P1+P2+P3))/3 

= (10+5+7)/3 = 22/3 = 7.33 

Average Turn Around Time = Average Waiting time + Average Execution time 

= 5.66 + 7.33 

= 13 milliseconds 

From this example, it is clear that the average waiting time and turn around time is much improved with the 

SJF scheduling for the same processes when compared to the FCFS algorithm. 

 

Example 2 

Calculate the waiting time and Turn Around Time (TAT) for each process and the Average waiting time and 

Turn Around Time for the above example if a new process P4 with estimated completion time 2 ms enters 

the ‘Ready’ queue after 2 ms of execution of P2. Assume all the processes contain only CPU operation and 

no I/O operations are involved. 

At the beginning, there are only three processes (P1, P2 and P3) available in the ‘Ready’ queue and 

the SJF scheduler picks up the process with the least execution completion time (In this example P2 with 
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execution completion time 5 ms) for scheduling. The execution sequence diagram for this is same as that of 

Example 1. 

Now process P4 with estimated execution completion time 2 ms enters the ‘Ready’ queue after 2 ms of 

start of execution of P2. Since the SJF algorithm is non-preemptive and process P2 does not contain any I/O 

operations, P2 continues its execution. After 5 ms of scheduling, P2 terminates and now the scheduler again 

sorts the ‘Ready’ queue for process with least execution completion time. Since the execution completion 

time for P4 (2 ms) is less than that of P3 (7 ms), which was supposed to be run after the completion of P2 

as per the ‘Ready’ queue available at the beginning of execution scheduling, P4 is picked up for executing. 

Due to the arrival of the process P4 with execution time 2 ms, the ‘Ready’ queue is re-sorted in the order P2, 

P4, P3, P1. At the beginning it was P2, P3, P1. The execution sequence now changes as per the following 

diagram 
 

 
P2 

 
P4 

 
P3 

 
P1 

0 5 7 

5 2 

14 24 

7 10 
 

The waiting time for all the processes are given as 

Waiting time for P2 = 0 ms (P2 starts executing first) 

Waiting time for P4 = 3 ms (P4 starts executing after completing P2. But P4 arrived after 2 ms of execution 

of P2. Hence its waiting time = Execution start time – Arrival Time = 5 – 2 = 3) 

Waiting time for P3 = 7 ms (P3 starts executing after completing P2 and P4) 

Waiting time for P1 = 14 ms (P1 starts executing after completing P2, P4 and P3) 

Average waiting time = (Waiting time for all processes) / No. of Processes 

= (Waiting time for (P2+P4+P3+P1)) / 4 

= (0 + 3 + 7 + 14)/4 = 24/4 

= 6 milliseconds 

Turn Around Time (TAT) for P2 = 5 ms (Time spent in Ready Queue + Execution Time) 

Turn Around Time (TAT) for P4 = 5 ms (Time spent in Ready Queue + Execution Time = (Execution Start 

Time – Arrival Time) + Estimated Execution Time = (5 – 2) + 2 

= 3 + 2) 

Turn Around Time (TAT) for P3 = 14 ms (Time spent in Ready Queue + Execution Time) 

Turn Around Time (TAT) for P1 = 24 ms (Time spent in Ready Queue + Execution Time) 

Average Turn Around Time = (Turn Around Time for all Processes) / No. of Processes 

= (Turn Around Time for (P2+P4+P3+P1)) / 4 

= (5+5+14+24)/4 = 48/4 

= 12 milliseconds 

The average waiting time for a given set of process is minimal in SJF scheduling and so it is optimal 

compared to other non-preemptive scheduling like FCFS. The major drawback of SJF algorithm is that 

a process whose estimated execution completion time is high may not get a chance to execute if more 

and more processes with least estimated execution time enters the ‘Ready’ queue before the process with 

longest estimated execution time started its execution (In non-preemptive SJF ). This condition is known as 

‘Starvation’. Another drawback of SJF is that it is difficult to know in advance the next shortest process in 

the ‘Ready’ queue for scheduling since new processes with different estimated execution time keep entering 

the ‘Ready’ queue at any point of time. 



417 Real-Time Operating System (RTOS) based Embedded System Design 
 

 

10.5.1.4 Priority Based Scheduling 
The Turn Around Time (TAT) and waiting time for processes in non-preemptive scheduling varies with the 

type of scheduling algorithm. Priority based non-preemptive scheduling algorithm ensures that a process 

with high priority is serviced at the earliest compared to other low priority processes in the ‘Ready’ queue. 

The priority of a task/process can be indicated through various mechanisms. The Shortest Job First (SJF) 

algorithm can be viewed as a priority based scheduling where each task is prioritised in the order of the 

time required to complete the task. The lower the time required for completing a process the higher is its 

priority in SJF algorithm. Another way of priority assigning is associating a priority to the task/process at 

the time of creation of the task/process. The priority is a number ranging from 0 to the maximum priority 

supported by the OS. The maximum level of priority is OS dependent. For Example, Windows CE supports 

256 levels of priority (0 to 255 priority numbers). While creating the process/task, the priority can be assigned 

to it. The priority number associated with a task/process is the direct indication of its priority. The priority 

variation from high to low is represented by numbers from 0 to the maximum priority or by numbers from 

maximum priority to 0. For Windows CE operating system a priority number 0 indicates the highest priority 

and 255 indicates the lowest priority. This convention need not be universal and it depends on the kernel 

level implementation of the priority structure. The non-preemptive priority based scheduler sorts the ‘Ready’ 

queue based on priority and picks the process with the highest level of priority for execution. 

 

Example 1 

Three processes with process IDs P1, P2, P3 with estimated completion time 10, 5, 7 milliseconds and priorities 

0, 3, 2 (0—highest priority, 3—lowest priority) respectively enters the ready queue together. Calculate the 

waiting time and Turn Around Time (TAT) for each process and the Average waiting time and Turn Around 

Time (Assuming there is no I/O waiting for the processes) in priority based scheduling algorithm. 

The scheduler sorts the ‘Ready’ queue based on the priority and schedules the process with the highest 

priority (P1 with priority number 0) first and the next high priority process (P3 with priority number 2) as 

second, and so on. The order in which the processes are scheduled for execution is represented as 
 

 
P1 

 
P3 

 
P2 

0 10 17 22 

10 7 5 
 

The waiting time for all the processes are given as 

Waiting time for P1 = 0 ms (P1 starts executing first) 

Waiting time for P3 = 10 ms (P3 starts executing after completing P1) 

Waiting time for P2 = 17 ms (P2 starts executing after completing P1 and P3) 

Average waiting time = (Waiting time for all processes) / No. of Processes 

= (Waiting time for (P1+P3+P2)) / 3 

= (0+10+17)/3 = 27/3 

= 9 milliseconds 

Turn Around Time (TAT) for P1 = 10 ms (Time spent in Ready Queue + Execution Time) 

Turn Around Time (TAT) for P3 = 17 ms (-Do-) 

Turn Around Time (TAT) for P2 = 22 ms (-Do-) 

Average Turn Around Time = (Turn Around Time for all processes) / No. of Processes 
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= (Turn Around Time for (P1+P3+P2)) / 3 

= (10+17+22)/3 = 49/3 

= 16.33 milliseconds 
 

Example 2 

Calculate the waiting time and Turn Around Time (TAT) for each process and the Average waiting time and 

Turn Around Time for the above example if a new process P4 with estimated completion time 6 ms and 

priority 1 enters the ‘Ready’ queue after 5 ms of execution of P1. Assume all the processes contain only CPU 

operation and no I/O operations are involved. 

At the beginning, there are only three processes (P1, P2 and P3) available in the ‘Ready’ queue and the 

scheduler picks up the process with the highest priority (In this example P1 with priority 0) for scheduling. 

The execution sequence diagram for this is same as that of Example 1. Now process P4 with estimated 

execution completion time 6 ms and priority 1 enters the ‘Ready’ queue after 5 ms of execution of P1. Since 

the scheduling algorithm is non-preemptive and process P1 does not contain any I/O operations, P1 continues 

its execution. After 10 ms of scheduling, P1 terminates and now the scheduler again sorts the ‘Ready’ queue 

for process with highest priority. Since the priority for P4 (priority 1) is higher than that of P3 (priority 2), 

which was supposed to be run after the completion of P1 as per the ‘Ready’ queue available at the beginning 

of execution scheduling, P4 is picked up for executing. Due to the arrival of the process P4 with priority 1, 

the ‘Ready’ queue is resorted in the order P1, P4, P3, P2. At the beginning it was P1, P3, P2. The execution 

sequence now changes as per the following diagram 
 

 

P1 

 

P4 

 

P3 

 

P2 

0 10 16 23 28 

10 6 7 5 

The waiting time for all the processes are given as 

Waiting time for P1 = 0 ms (P1 starts executing first) 

Waiting time for P4 = 5 ms (P4 starts executing after completing P1. But P4 arrived after 5 ms of execution of 

P1. Hence its waiting time = Execution start time – Arrival Time = 10 – 5 = 5) 

Waiting time for P3 = 16 ms (P3 starts executing after completing P1 and P4) 

Waiting time for P2 = 23 ms (P2 starts executing after completing P1, P4 and P3) 

Average waiting time = (Waiting time for all processes) / No. of Processes 

= (Waiting time for (P1+P4+P3+P2)) / 4 

= (0 + 5 + 16 + 23)/4 = 44/4 

= 11 milliseconds 

Turn Around Time (TAT) for P1 = 10 ms (Time spent in Ready Queue + Execution Time) 

Turn Around Time (TAT) for P4 = 11 ms (Time spent in Ready Queue + Execution 

Time = (Execution Start Time – Arrival Time) + Estimated 

Execution Time = (10 – 5) + 6 = 5 + 6) 

Turn Around Time (TAT) for P3 = 23 ms (Time spent in Ready Queue + Execution Time) 

Turn Around Time (TAT) for P2 = 28 ms (Time spent in Ready Queue + Execution Time) 

Average Turn Around Time = (Turn Around Time for all processes) / No. of Processes 

= (Turn Around Time for (P2 + P4 + P3 + P1)) / 4 

= (10 + 11 + 23 + 28)/4 = 72/4 

= 18 milliseconds 
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Similar to SJF scheduling algorithm, non-preemptive priority based algorithm also possess the drawback 

of ‘Starvation’ where a process whose priority is low may not get a chance to execute if more and more 

processes with higher priorities enter the ‘Ready’ queue before the process with lower priority started its 

execution. ‘Starvation’ can be effectively tackled in priority based non-preemptive scheduling by dynamically 

raising the priority of the low priority task/process which is under starvation (waiting in the ready queue for a 

longer time for getting the CPU time). The technique of gradually raising the priority of processes which are 

waiting in the ‘Ready’ queue as time progresses, for preventing ‘Starvation’, is known as ‘Aging’. 
 

10.5.2 Preemptive Scheduling 

Preemptive scheduling is employed in systems, which implements preemptive multitasking model. In 

preemptive scheduling, every task in the ‘Ready’ queue gets a chance to execute. When and how often each 

process gets a chance to execute (gets the CPU time) is dependent on the type of preemptive scheduling algorithm 

used for scheduling the processes. In this kind of scheduling, the scheduler can preempt (stop temporarily) 

the currently executing task/process and select another task from the ‘Ready’ queue for execution. When to 

pre-empt a task and which task is to be picked up from the ‘Ready’ queue for execution after preempting the 

current task is purely dependent on the scheduling algorithm. A task which is preempted by the scheduler 

is moved to the ‘Ready’ queue. The act of moving a ‘Running’ process/task into the ‘Ready’ queue by the 

scheduler, without the processes requesting for it is known as ‘Preemption’. Preemptive scheduling can be 

implemented in different approaches. The two important approaches adopted in preemptive scheduling are 

time-based preemption and priority-based preemption. The various types of preemptive scheduling adopted 

in task/process scheduling are explained below. 

10.5.2.1 Preemptive SJF Scheduling/Shortest Remaining Time (SRT) 
The non-preemptive SJF scheduling algorithm sorts the ‘Ready’ queue only after completing the execution of 

the current process or when the process enters ‘Wait’ state, whereas the preemptive SJF scheduling algorithm 

sorts the ‘Ready’ queue when a new process enters the ‘Ready’ queue and checks whether the execution 

time of the new process is shorter than the remaining of the total estimated time for the currently executing 

process. If the execution time of the new process is less, the currently executing process is preempted and 

the new process is scheduled for execution. Thus preemptive SJF scheduling always compares the execution 

completion time (It is same as the remaining time for the new process) of a new process entered the ‘Ready’ 

queue with the remaining time for completion of the currently executing process and schedules the process 

with shortest remaining time for execution. Preemptive SJF scheduling is also known as Shortest Remaining 

Time (SRT) scheduling. 

Now let us solve Example 2 given under the Non-preemptive SJF scheduling for preemptive SJF 

scheduling. The problem statement and solution is explained in the following example. 

 

Example 1 

Three processes with process IDs P1, P2, P3 with estimated completion time 10, 5, 7 milliseconds respectively 

enters the ready queue together. A new process P4 with estimated completion time 2 ms enters the ‘Ready’ 

queue after 2 ms. Assume all the processes contain only CPU operation and no I/O operations are involved. 

At the beginning, there are only three processes (P1, P2 and P3) available in the ‘Ready’ queue and 

the SRT scheduler picks up the process with the shortest remaining time for execution completion (In this 

example, P2 with remaining time 5 ms) for scheduling. The execution sequence diagram for this is same as 

that of example 1 under non-preemptive SJF scheduling. 

Now process P4 with estimated execution completion time 2 ms enters the ‘Ready’ queue after 2 ms of 
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start of execution of P2. Since the SRT algorithm is preemptive, the remaining time for completion of process 

P2 is checked with the remaining time for completion of process P4. The remaining time for completion of 

P2 is 3 ms which is greater than that of the remaining time for completion of the newly entered process P4 

(2 ms). Hence P2 is preempted and P4 is scheduled for execution. P4 continues its execution to finish since 

there is no new process entered in the ‘Ready’ queue during its execution. After 2 ms of scheduling P4 

terminates and now the scheduler again sorts the ‘Ready’ queue based on the remaining time for completion 

of the processes present in the ‘Ready’ queue. Since the remaining time for P2 (3 ms), which is preempted 

by P4 is less than that of the remaining time for other processes in the ‘Ready’ queue, P2 is scheduled for 

execution. Due to the arrival of the process P4 with execution time 2 ms, the ‘Ready’ queue is re-sorted in 

the order P2, P4, P2, P3, P1. At the beginning it was P2, P3, P1. The execution sequence now changes as per 

the following diagram 
 

 
P2 

 
P4 

 
P2 

 
P3 

 
P1 

0 2 4 7 14 24 

2 2 3 7 10 
 

The waiting time for all the processes are given as 

Waiting time for P2 = 0 ms + (4 – 2) ms = 2 ms (P2 starts executing first and is interrupted by P4 and has to 

wait till the completion of P4 to get the next CPU slot) 

Waiting time for P4 = 0 ms (P4 starts executing by preempting P2 since the execution time for completion 

of P4 (2 ms) is less than that of the Remaining time for execution completion of P2 

(Here it is 3 ms)) 

Waiting time for P3 = 7 ms (P3 starts executing after completing P4 and P2) 

Waiting time for P1 = 14 ms (P1 starts executing after completing P4, P2 and P3) 

Average waiting time = (Waiting time for all the processes) / No. of Processes 

= (Waiting time for (P4+P2+P3+P1)) / 4 

= (0 + 2 + 7 + 14)/4 = 23/4 

= 5.75 milliseconds 

Turn Around Time (TAT) for P2 = 7 ms (Time spent in Ready Queue + Execution Time) 

Turn Around Time (TAT) for P4 = 2 ms (Time spent in Ready Queue + Execution Time = (Execution Start 

Time – Arrival Time) + Estimated Execution Time = (2 – 2) + 2) 

Turn Around Time (TAT) for P3 = 14 ms (Time spent in Ready Queue + Execution Time) 

Turn Around Time (TAT) for P1 = 24 ms (Time spent in Ready Queue + Execution Time) 

Average Turn Around Time = (Turn Around Time for all the processes) / No. of Processes 

= (Turn Around Time for (P2+P4+P3+P1)) / 4 

= (7+2+14+24)/4 = 47/4 

= 11.75 milliseconds 

Now let’s compare the Average Waiting time and Average Turn Around Time with that of the Average 

waiting time and Average Turn Around Time for non-preemptive SJF scheduling (Refer to Example 2 given 

under the section Non-preemptive SJF scheduling) 

Average Waiting Time in non-preemptive SJF scheduling = 6 ms 

Average Waiting Time in preemptive SJF scheduling = 5.75 ms 

Average Turn Around Time in non-preemptive SJF scheduling = 12 ms 

Average Turn Around Time in preemptive SJF scheduling = 11.75 ms 
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This reveals that the Average waiting Time and Turn Around Time (TAT) improves significantly with 

preemptive SJF scheduling. 

10.5.2.2 Round Robin (RR) Scheduling 
The term Round Robin is very popular among the sports and games activities. You might have heard about 

‘Round Robin’ league or ‘Knock out’ league associated with any football or cricket tournament. In the ‘Round 

Robin’ league each team in a group gets an equal chance to play against the rest of the teams in the same 

group whereas in the ‘Knock out’ league the losing team in a match moves out of the tournament ☺. 
In the process scheduling context also, ‘Round Robin’ brings the same message “Equal chance to all”. 

In Round Robin scheduling, each process in the ‘Ready’ queue is executed for a pre-defined time slot. The 

execution starts with picking up the first process in the ‘Ready’ queue (see Fig. 10.13). It is executed for a 

pre-defined time and when the pre-defined time elapses or the process completes (before the pre-defined time 

slice), the next process in the ‘Ready’ queue is selected for execution. This is repeated for all the processes 

in the ‘Ready’ queue. Once each process in the ‘Ready’ queue is executed for the pre-defined time period, 

the scheduler comes back and picks the first process in the ‘Ready’ queue again for execution. The sequence 

is repeated. This reveals that the Round Robin scheduling is similar to the FCFS scheduling and the only 

difference is that a time slice based preemption is added to switch the execution between the processes in 

the ‘Ready’ queue. The ‘Ready’ queue can be considered as a circular queue in which the scheduler picks 

up the first process for execution and moves to the next till the end of the queue and then comes back to the 

beginning of the queue to pick up the first process. 
 

Fig. 10.13  Round Robin Scheduling 
 

The time slice is provided by the timer tick feature of the time management unit of the OS kernel (Refer the 

Time management section under the subtopic ‘The Real-Time kernel’ for more details on Timer tick). Time 

slice is kernel dependent and it varies in the order of a few microseconds to milliseconds. Certain OS kernels 

may allow the time slice as user configurable. Round Robin scheduling ensures that every process gets a fixed 

amount of CPU time for execution. When the process gets its fixed time for execution is determined by the 

Process 1 

Process 4 Process 2 

Process 3 

Execution Switch 
Execution Switch 

Execution Switch 
Execution Switch 
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FCFS policy (That is, a process entering the Ready queue first gets its fixed execution time first and so on…). 

If a process terminates before the elapse of the time slice, the process releases the CPU voluntarily and the 

next process in the queue is scheduled for execution by the scheduler.. 

 

 

 

 

Example 1 

Three processes with process IDs P1, P2, P3 with estimated completion time 6, 4, 2 milliseconds respectively, 

enters the ready queue together in the order P1, P2, P3. Calculate the waiting time and Turn Around Time 

(TAT) for each process and the Average waiting time and Turn Around Time (Assuming there is no I/O 

waiting for the processes) in RR algorithm with Time slice = 2 ms. 

The scheduler sorts the ‘Ready’ queue based on the FCFS policy and picks up the first process P1 from the 

‘Ready’ queue and executes it for the time slice 2 ms. When the time slice is expired, P1 is preempted and P2 

is scheduled for execution. The Time slice expires after 2ms of execution of P2. Now P2 is preempted and P3 

is picked up for execution. P3 completes its execution within the time slice and the scheduler picks P1 again 

for execution for the next time slice. This procedure is repeated till all the processes are serviced. The order 

in which the processes are scheduled for execution is represented as 
 

 
P1 

 
P2 

 
P3 

 
P1 

 
P2 

 
P1 

0 2 4 6 8 10 12 

2 2 2 2 2 2 

The waiting time for all the processes are given as 

Waiting time for P1 = 0 + (6 – 2) + (10 – 8) = 0 + 4 + 2 = 6 ms 

(P1 starts executing first and waits for two time slices to get execution back and again 

1 time slice for getting CPU time) 

Waiting time for P2 = (2 – 0) + (8 – 4) = 2 + 4 = 6 ms 

(P2 starts executing after P1 executes for 1 time slice and waits for two time slices to 

get the CPU time) 

Waiting time for P3 = (4 – 0) = 4 ms 

(P3 starts executing after completing the first time slices for P1 and P2 and completes 

its execution in a single time slice) 

Average waiting time = (Waiting time for all the processes) / No. of Processes 

= (Waiting time for (P1 + P2 + P3)) / 3 

= (6 + 6 + 4)/3 = 16/3 

= 5.33 milliseconds 

Turn Around Time (TAT) for P1 = 12 ms (Time spent in Ready Queue + Execution Time) 

Turn Around Time (TAT) for P2 = 10 ms (-Do-) 

Turn Around Time (TAT) for P3 = 6 ms (-Do-) 
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Average Turn Around Time = (Turn Around Time for all the processes) / No. of Processes 

= (Turn Around Time for (P1 + P2 + P3))/3 

= (12 + 10 + 6)/3 = 28/3 

= 9.33 milliseconds 

Average Turn Around Time (TAT) is the sum of average waiting time and average execution time. 

Average Execution time = (Execution time for all the process)/No. of processes 

= (Execution time for (P1 + P2 + P3))/3 

= (6 + 4 + 2)/3 = 12/3 = 4 

Average Turn Around Time = Average Waiting time + Average Execution time 

= 5.33 + 4 

= 9.33 milliseconds 

RR scheduling involves lot of overhead in maintaining the time slice information for every process which 

is currently being executed. 

10.5.2.3 Priority Based Scheduling 
Priority based preemptive scheduling algorithm is same as that of the non-preemptive priority based 

scheduling except for the switching of execution between tasks. In preemptive scheduling, any high priority 

process entering the ‘Ready’ queue is immediately scheduled for execution whereas in the non-preemptive 

scheduling any high priority process entering the ‘Ready’ queue is scheduled only after the currently executing 

process completes its execution or only when it voluntarily relinquishes the CPU. The priority of a task/ 

process in preemptive scheduling is indicated in the same way as that of the mechanism adopted for non- 

preemptive multitasking. Refer the non-preemptive priority based scheduling discussed in an earlier section 

of this chapter for more details. 

 

Example 1 

Three processes with process IDs P1, P2, P3 with estimated completion time 10, 5, 7 milliseconds and 

priorities 1, 3, 2 (0—highest priority, 3—lowest priority) respectively enters the ready queue together. A new 

process P4 with estimated completion time 6 ms and priority 0 enters the ‘Ready’ queue after 5 ms of start of 

execution of P1. Assume all the processes contain only CPU operation and no I/O operations are involved. 

At the beginning, there are only three processes (P1, P2 and P3) available in the ‘Ready’ queue and the 

scheduler picks up the process with the highest priority (In this example P1 with priority 1) for scheduling. 

Now process P4 with estimated execution completion time 6 ms and priority 0 enters the ‘Ready’ queue 

after 5 ms of start of execution of P1. Since the scheduling algorithm is preemptive, P1 is preempted by P4 

and P4 runs to completion. After 6 ms of scheduling, P4 terminates and now the scheduler again sorts the 

‘Ready’ queue for process with highest priority. Since the priority for P1 (priority 1), which is preempted 

by P4 is higher than that of P3 (priority 2) and P2 ((priority 3), P1 is again picked up for execution by the 

scheduler. Due to the arrival of the process P4 with priority 0, the ‘Ready’ queue is resorted in the order P1, 

P4, P1, P3, P2. At the beginning it was P1, P3, P2. The execution sequence now changes as per the following 

diagram 
 

 
P1 

 
P4 

 
P1 

 
P3 

 
P2 

 

0 5 11 16 

5 6 5 7 

23 28 

5 



424 Introduction to Embedded Systems 
 

 

The waiting time for all the processes are given as 

Waiting time for P1 = 0 + (11 – 5) = 0 + 6 = 6 ms 

(P1 starts executing first and gets preempted by P4 after 5 ms and again gets the CPU 

time after completion of P4) 

Waiting time for P4 = 0 ms 

(P4 starts executing immediately on entering the ‘Ready’ queue, by preempting P1) 

Waiting time for P3 = 16 ms (P3 starts executing after completing P1 and P4) 

Waiting time for P2 = 23 ms (P2 starts executing after completing P1, P4 and P3) 

Average waiting time = (Waiting time for all the processes) / No. of Processes 

= (Waiting time for (P1+P4+P3+P2)) / 4 

= (6 + 0 + 16 + 23)/4 = 45/4 

= 11.25 milliseconds 

Turn Around Time (TAT) for P1 = 16 ms (Time spent in Ready Queue + Execution Time) 

Turn Around Time (TAT) for P4 = 6 ms 

(Time spent in Ready Queue + Execution Time = (Execution Start Time – Arrival Time) 

+ Estimated Execution Time = (5 – 5) + 6 = 0 + 6) 

Turn Around Time (TAT) for P3 = 23 ms (Time spent in Ready Queue + Execution Time) 

Turn Around Time (TAT) for P2 = 28 ms (Time spent in Ready Queue + Execution Time) 

Average Turn Around Time = (Turn Around Time for all the processes) / No. of Processes 

= (Turn Around Time for (P2 + P4 + P3 + P1)) / 4 

= (16 + 6 + 23 + 28)/4 = 73/4 

= 18.25 milliseconds 

Priority based preemptive scheduling gives Real-Time attention to high priority tasks. Thus priority 

based preemptive scheduling is adopted in systems which demands ‘Real-Time’ behaviour. Most of the 

RTOSs make use of the preemptive priority based scheduling algorithm for process scheduling. Preemptive 

priority based scheduling also possesses the same drawback of non-preemptive priority based scheduling– 

‘Starvation’. This can be eliminated by the ‘Aging’ technique. Refer the section Non-preemptive priority 

based scheduling for more details on ‘Starvation’ and ‘Aging’. 
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