
EMBEDDED FIRMWARE

DESIGN & DEVELOPMENT

AJIET, Mangalore

• Firmware refers to a small piece of code that resides in non-

volatile memory.

• In hardware peripherals that are commonly found in offices

these days (e.g. printers, VoIP(voice over Internet protocol)

phones, etc.)

• Firmware's are usually responsible for loading (e.g. OS code

signature verification) and managing (e.g. flashing OS in

recovery mode) the operating systems that is installed on the

machine.

• It's the operating system's job to carry out the actual task (e.g.

printing)

What is Firmware?

• Two basic approaches are used in embedded systems.

1.Conventional procedural based design approach or super loop

model.

2.Embeded operating system based design

Firmware design approaches:

• The super loop based firmware development approach is adopted

for applications that are not time critical and where the response

time is not so important

• i.e..task by task approach.

 Task executed in serial in this approach.

Super loop based approach:

• Configure the common parameters and perform initialization for

various hardware components memory, register, etc.

• Start the first task and execute it

• Execute the second

• ……

• And execute the last defined task

• Jump back to the first task and follow the same

Firmware execution flow:

Void main ()

{

Configurations();

Initializations();

While(1)

{

Task 1();

Task 2();

…..

Task n();

}

}

Example: c program code

• The tasks are running inside an infinite loop the only way to

come out of the loop is hardware interrupt or an interrupt

assertion.

• A hardware reset brings back the program execution back to

the main loop.

• Interrupt routine suspends the task execution temporarily and

performs the corresponding interrupt routine and on

completion of the interrupt routine it restarts the task execution

from the point where it got interrupted.

Analysis:

Merit:

Low cost

Demerit:

Failure in one part affect whole system

Lack of real timeliness

Application:

Electronic video game toy, card-reader

Merits and demerits:

• Operating system based approach contains operating system

which can be general purpose operating system(GPOS) or real

time operating system(RTOS) to host the user written

application firmware.

• GPOS design is similar to that of PC based application where

the device contains an OS(windows/unix/linux,etc for desktop

pc) and will be creating and running user application on top of

it.

• Ex: PDA(Personal digital Assistant), HAND HELD DEVICES

Embedded operating system based approach

• This OS based applications requires “driver software” for

different hardware present on the board to communicate with

them.

• RTOS design approach is employed in embedded products

demanding real time response .

• Responses in a timely and predictable manner to events .

• RTOS allows flexible scheduling of system resources like

CPU and memory and offers someway to communicate

between the tasks.

Ex: Windows CE, pSOS, VxWorks

 Assembly language based development

 High level language based development

 Mixed assembly and high level language based development

Firmware development languages:

 Assembly language is the human readable notation of ‘machine

language’.

 ‘machine language’ is processor understandable language ,

processor only deals with binaries(1 and 0).

 Machine language is an binary representation and it consist of 1s

and 0s.machine language is made readable by using specific

symbols called ‘mnemonics’.

 Machine language is an interface between processor and

programmer.

Assembly level language development:

• Low level , system related , programming is carried out using

assembly.

“Assembly language programming is the task of writing

processor specific machine code in mnemonic form,

converting the mnemonic to machine laguage using

assembler”

Format of assembly: generally in assembly instruction is an

opcode followed by operand.

Ex:

Label opcode operand comment

mov a , #30 ;data transfer operation

• Opcode tells the processor what to do, in the previous example it

is mov a .

• operand provides the data and information required to perform the

action by the opcode, in previous example it is #30.

• The operand may be single or dual, more.

• Label is an optional field , a ‘label’ is an identifier used to

reduce the reliance of the programmers for remembering

where the data or the code is located.

• Used to represent usually memory location , address of

program ,sub routine ,code portion..etc . its an optional field.

• Assembly program contains an main routine and it may or may

not contain the sub routine.

• Labels are used for representing subroutine names and jump

locations in assembly language programming.

• Subroutine is small portion of code which is used frequently

by the main program.

• instead of writing again and again we just call the subroutine

when it is required by using required instructions.

• Example of subroutine as follows such as delay in a program.

EX1:

delay1: mov R0,#255

DJNZ R1,delay1

RET

EX2:

delay2:

ORG 0100H

mov R0,#255

DJNZ R1,0100H

RET

 Here ORG 0100h is an assembler directive , assembler directive are
used to determine starting address of the program and entry address
of the program(ex..ORG 0100H).

 Also used for reserving memory for data variables ,arrays and
structures(ex..var EQU 70h).

 Initializing variable values(ex..val data 12h).

Source file to object file

translation

Assembly to machine language conversion:

• Assembler perform the translation of assembly to machine

conversion which involves Source file to object file translation.

Each source module is written in Assembly and is stored as .src

file or .asm file.

• On successful assembling of each .src/.asm file a corresponding

object file is created with extension ‘.obj’.

• Object file is an syntax corrected source file it does not contain

absolute address of where the generated code to be placed on the

program memory & it is called re-locatable segment

• Linker /locater is an another software utility responsible for

“linking the various object modules in a multi module project

and assigning absolute address to each module”.

• Object to hex file is the final stage of the conversion converting

assembly mnemonics to machine understandable code ,hex file

is the representation of the machine code and the hex file is

dumped into the code memory of the processor/controller.

Advantages :

 Efficient code memory and data memory usage

 High performance

 Low level hardware access

Disadvantages:

 High development time

 Developer dependency

 Non portable

• It is formatted ordered program collection of object modules in

the library

• It is some kind of source code hiding technique

• If we don't want to reveal the source code but want to distribute

them to application developer for making use of them in their

application

• It can be supplied as library

Library file creation & usage

• Since assembly language is most time consuming, tedious and

requires skilled programmers , so the other alternative

developed is high level language.

• Here compiler will take the action to convert the code written

in high level(c, c++,java) to assembly level which can

understood by machine.

• C is the most popularly used in embedded software, nowadays

c++ is also using in emb. software.

High level language :

• Various steps involved in HLL is similar to that of the

assembly language except the conversion of the source file

written in HLL to object file is done by cross compiler.

Advantages:

 Reduced development time

 Developer independency

 Portability

Limitation:

 Some cross compilers available for high level language are

not so efficient in generating optimized target processor

specific instructions.

 Investment is high for development tools used.

High level to machine code conversion:

• Certain embedded firmware development require mixing both

HLL and assembly , which can be done through three ways.

Mixing assembly with high level language:

 Assembly routine are mixed with the ‘c’ in that situation where the

entire program is in c and the cross compiler is do not have a built

in support for implementing certain features like interrupt service

function(ISR) or programmer wants to take the advantage of speed

and optimized code offered by the machine.

Mixing assembly and high level language:

• Useful in following scenarios

• Source code is already available in assembly language and the

routine written in high level language like ‘c’ needs to be

included in the existing code

• Entire source code is planned in assembly for various reasons like

optimized code ,optimal performance, so that some portion of

code is tedious to code in assembly.

• To include library files written in ‘c’ provided by the cross

compiler . Ex.. graphics library function and string operation

supported by c.

Mixing HLL with assembly:

• In both of the mixing language is done by passing the

parameter written in one language to other language ie..pass by

value in a function.

Inline assembly mixing:

 inline assembly mixing is the another technique of inserting

the targeted processor specific assembly instruction at a

location of a code written in HLL ‘c’. Avoids the delay on

calling an assembly routine from a c code.

 Special key words are used to indicate the start and end of

assembly code. keywords are compiler specific.

 Ex..#pragma asm

mov a,#13h

#pragma endasm

@ McGraw-Hill Education

28

• C is well structured, well defined and standardised general

purpose programming.

• ANSI(American national Standard Institute) and have various

library files

• Compiler used for conversion

• Embedded C is subset of conventional C.

• Supports all C instructions and have few target processor specific

instructions

• Tailored to target processor

• Cross compiler

C vs Embedded C

@ McGraw-Hill Education

30

• Compiler converts a source code written in high level language on

top of particular OS running on a specific target processor.

• Cross compilers used in cross-platform applications.

The compiler running on a particular target processor converts the

source code to machine code for a target processor whose

architecture and instruction set is different from current development

environment.

Compiler Vs Cross-Compiler

@ McGraw-Hill Education

32

TYPES OF FILES GENERATED ON CROSS-

COMPILATION

• Cross-compilation is the process of converting a source code

written in high level language (like ‘Embedded C’) to a target

processor/ controller understandable machine code (e.g. ARM

processor or 8051 microcontroller specifi c machine code).

• List File (.lst), Hex File (.hex), Pre-processor Output file, Map

File (File extension linker dependent), Object File (.obj)

@ McGraw-Hill Education

33

List File (.LST File)

• Listing file is generated during the cross-compilation process and

it contains an abundance of information about the cross

compilation process, like cross compiler details, formatted source

text (‘C’ code), assembly code generated from the source file,

symbol tables, errors and warnings detected during the cross-

compilation process.

• The ‘list file’ generated contains the following sections.

• Page Header, Command Line,Source Code, Assembly Listing,

Symbol Listing, Module Information, Warnings and Errors

@ McGraw-Hill Education

34

Preprocessor Output File

• The preprocessor output file generated during cross-compilation

contains the preprocessor output for the preprocessor instructions

used in the source file.

• The preprocessor output file is a valid C source file.

@ McGraw-Hill Education

35

Object File

• Cross-compiling/assembling each source module (written in

C/Assembly) converts the various Embedded C/ Assembly

instructions and other directives present in the module to an

object (.OBJ) file.

• OMF51 or OMF2 are the two objects file formats supported by

C51 cross compiler.

• The object file is a specially formatted file with data records for

symbolic information, object code, debugging information,

library references, etc.

@ McGraw-Hill Education

36

It is the responsibility of the linker/locater to assign an absolute

memory location to the object code.

The list of some of the details stored in an object file is given below.

1. Reserved memory for global variables.

2. Public symbol (variable and function) names.

3. External symbol (variable and function) references.

4. Library files with which to link.

5. Debugging information to help synchronize source lines with

object code.

@ McGraw-Hill Education

37

Map File (.MAP)

• Map file contains information about the link/locate process and is

composed of a number of sections.

• It is not necessary that the map files generated by all linkers/

locaters should contain all these information. Some may contain

less information compared to this or others may contain more

information than given in this. It all depends on the linker/locater.

@ McGraw-Hill Education

38

• Page Header

• Command Line

• CPU Details

• Input Modules

• Memory Map

• Symbol Table

• Inter Module Cross Reference

• Program Size

• Warnings and Errors

@ McGraw-Hill Education

39

HEX File (.HEX)

• Hex file is the binary executable file created from the source code.

• The absolute object file created by the linker/locater is converted into processor

understandable binary code.

• The utility used for converting an object file to a hex file is known as Object to

Hex file converter.

• Intel HEX and Motorola HEX are the two commonly used hex file formats.

Intel HEX file is an ASCII text file in which the HEX data is represented in

ASCII format in lines.

• The lines in an Intel HEX file are corresponding to a HEX Record.

• Each record is made up of hexadecimal numbers that represent machine-

language code and/or constant data.

@ McGraw-Hill Education

40

Intel HEX file is used for transferring the program and data to a ROM or

EPROM which is used as code memory storage.

• Each record is made up of five fields arranged in the following

format:

• :llaaaattdd...cc

@ McGraw-Hill Education

41

@ McGraw-Hill Education

42

Intel hex fi le generated for “Hello World” application example is given below

@ McGraw-Hill Education

43

Motorola HEX File Format

• Motorola HEX file is also an ASCII text file where the HEX data

is represented in ASCII format in lines.

• The lines in Motorola HEX file represent a HEX Record. Each

record is made up of hexadecimal numbers that represent

machine-language code and/or constant data.

• The general form of Motorola Hex record is given below.

@ McGraw-Hill Education

44

@ McGraw-Hill Education

45

@ McGraw-Hill Education

46

DISASSEMBLER/DECOMPILER

• The process of converting machine codes into Assembly code is

known as ‘Disassembling’.

• In operation, disassembling is complementary to

assembling/crossassembling.

• Decompiler is the utility program for translating machine codes

into corresponding high level language instructions.

• Decompiler performs the reverse operation of compiler/cross-

compiler.

• The disassemblers/ decompilers for different family of

processors/controllers are different.

@ McGraw-Hill Education

47

• Disassemblers/ Decompilers are powerful tools for analyzing the

presence of malicious codes (virus information) in an executable

image.

• It is not possible for a disassembler/decompiler to generate an

exact replica of the original assembly code/high level source code

in terms of the symbolic constants and comments used.

• However disassemblers/decompilers generate a source code

which is somewhat matching to the original source code from

which the binary code is generated

@ McGraw-Hill Education

48

SIMULATORS, EMULATORS AND DEBUGGING

• Simulator is a software tool used for simulating the various

conditions for checking the functionality of the application

firmware.

• The features of simulator based debugging are listed below.

1) Purely software based

2) Doesn’t require a real target system

3) Very primitive (Lack of featured I/O support. Everything is a

simulated one)

4) Lack of Real-time behavior

@ McGraw-Hill Education

49

Advantages of Simulator Based Debugging

• Simulator based debugging techniques are simple and

straightforward.

• No Need for Original Target Board: Simulator based

debugging technique is purely software oriented. User only needs

to know about the memory map of various devices within the

target board and the firmware should be written on the basis of it.

Firmware development can start well in advance immediately

after the device interface and memory maps are finalized. This

saves development time.

• Simulate I/O Peripherals: Using simulator’s I/O support you

can edit the values for I/O registers and can be used as the

input/output value in the firmware execution.

@ McGraw-Hill Education

50

Simulates Abnormal Conditions:

• With simulator’s simulation support you can input any desired

value for any parameter during debugging the firmware and

can observe the control flow of firmware.

• It really helps the developer in simulating abnormal operational

environment for firmware and helps the firmware developer to

study the behavior of the firmware under abnormal input

conditions.

VCET, Puttur

@ McGraw-Hill Education

51

Limitations of Simulator based Debugging

• Deviation from Real Behaviour: Simulation-based firmware

debugging is always carried out in a development environment

where the developer may not be able to debug the firmware under

all possible combinations of input.

• Under certain operating conditions we may get some particular

result and it need not be the same when the firmware runs in a

production environment.

• Lack of Real Timeliness : The major limitation of simulator

based debugging is that it is not real-time in behavior.

• The debugging is developer driven and it is no way capable of

creating a real time behaviour.

@ McGraw-Hill Education

52

Emulators and Debuggers

• Debugging is the process of diagnosing the firmware execution,

monitoring the target processor’s registers and memory while the

firmware is running and checking the signals from various buses

of the embedded hardware.

• Hardware debugging and firmware debugging.

• Hardware debugging deals with the monitoring of various bus

signals and checking the status lines of the target hardware.

• Firmware debugging deals with examining the firmware

execution, execution flow, changes to various CPU registers and

status registers on execution of the firmware to ensure that the

firmware is running as per the design.

@ McGraw-Hill Education

53

various types of debugging techniques

• Incremental EEPROM Burning Technique

• This is the most primitive type of firmware debugging technique

where the code is separated into different functional code units.

• Instead of burning the entire code into the EEPROM chip at

once, the code is burned in incremental order, where the code

corresponding to all functionalities are separately coded, cross-

compiled and burned into the chip one by one.

• The code will incorporate some indication support like lighting up

an “LED (every embedded product contains at least one LED).

• If the first functionality is found working perfectly on the target

board with the corresponding code burned into the EEPROM, go

for burning the code corresponding to the next functionality and

check whether it is working.

@ McGraw-Hill Education

54

• Repeat this process till all functionalities are covered.

• Ensure that before entering into one level up, the previous level

has delivered a correct result. If the code corresponding to any

functionality is found not giving the expected result, fix it by

modifying the code and then only go for adding the next

functionality for burning into the EEPROM.

• Combine the entire source for all functionalities together, re-

compile and burn the code for the total system functioning.

@ McGraw-Hill Education

55

Inline Breakpoint Based Firmware Debugging

• Within the firmware where you want to ensure that firmware

execution is reaching up to a specified point, insert an inline

debug code immediately after the point.

• The debug code is a printf() function which prints a string given

as per the firmware. You can insert debug codes (printf())

commands at each point where you want to ensure the firmware

execution is covering that point.

• Burn the corresponding hex file into the EEPROM.

@ McGraw-Hill Education

56

Monitor Program Based Firmware Debugging

• In this approach a monitor program which acts as a supervisor is

developed. The monitor program controls the downloading of

user code into the code memory, inspects and modifies

register/memory locations;

• The monitor program always listens to the serial port of the target

device and according to the command received from the serial

interface it performs command specific actions like firmware

downloading, memory inspection/modification, sends the debug

information (various register and memory contents) back to the

main debug program running on the development PC, etc.

@ McGraw-Hill Education

57

• The first step in any monitor program development is determining

a set of commands for performing various operations like fi

rmware downloading, memory/ register inspection/modification,

single stepping, etc.

• Once the commands for each operation is fixed, write the code for

performing the actions corresponding to these commands.

• On receiving a command, examine it and perform the action

corresponding to it.

@ McGraw-Hill Education

58

• The most common type of interface used between target board

and debug application is RS-232/USB Serial interface.

• After the successful completion of the ‘monitor program’

development, it is compiled and burned into the FLASH memory

or ROM of the target board.

• The code memory containing the monitor program is known as

the ‘ Monitor ROM’.

@ McGraw-Hill Education

59

@ McGraw-Hill Education

60

The monitor program features.

1. Command set interface to establish communication with the

debugging application

2. Firmware download option to code memory

3. Examine and modify processor registers and working memory

(RAM)

4. Single step program execution

5. Set breakpoints in firmware execution

6. Send debug information to debug application running on host

machine

@ McGraw-Hill Education

61

The major drawbacks of monitor based debugging system are

• The entire memory map is converted into a Von-Neumann model

and it is shared between the monitor ROM, monitor program data

memory, monitor program trace buffer, user written fi rmware

and external user memory.

• Wastage of a serial port

@ McGraw-Hill Education

62

In Circuit Emulator (ICE) Based Firmware Debugging

• ‘Emulator’ is a self-contained hardware device which emulates

the target CPU.

• In summary, the simulator ‘simulates’ the target board CPU and

the emulator ‘emulates’ the target board CPU.

• pure software applications which perform the functioning of a

hardware emulator is also called as ‘Emulators’ (though they are

‘Simulators’ in operation).

• The emulators for different families of processors/controllers are

different.

• The Emulator POD forms the heart of any emulator system and it

contains the following functional units

@ McGraw-Hill Education

63

@ McGraw-Hill Education

64

Emulation Device

• Emulation Device is a replica of the target CPU which receives

various signals from the target board through a device adaptor

connected to the target board and performs the execution of fi

rmware under the control of debug commands from the debug

application.

• The emulation device can be either a standard chip same as the

target processor (e.g. AT89C51) or a Programmable Logic

Device (PLD) configured to function as the target CPU.

• If a standard chip is used as the emulation device, the emulation

will provide real-time execution behaviour ,emulator becomes

dedicated to that particular device and cannot be re-used for the

derivatives of the same chip.

@ McGraw-Hill Education

65

PLD-based emulators can easily be re-configured to use with

derivatives of the target CPU under consideration.

• PLD-based emulator logic is easy to implement for simple target

CPUs but for complex target CPUs it is quite difficult.

@ McGraw-Hill Education

66

Emulation Memory

• It is the Random Access Memory (RAM) incorporated in the

Emulator device. It acts as a replacement to the target board’s

EEPROM

• Emulation memory also acts as a trace buffer in debugging.

• Trace buffer is a memory pool holding the instructions

executed/registers modified/related data by the processor while

debugging.

• The common features of trace buffer memory are

1)Trace buffer records each bus cycle in frames

2) Trace data can be viewed in the debugger application as

Assembly/Source code

3)Trace buffering can be done on the basis of a Trace trigger (Event)

@ McGraw-Hill Education

67

Emulator Control Logic

• Emulator control logic is the logic circuits used for implementing

complex hardware breakpoints, trace buffer trigger detection,

trace buffer control, etc.

• Device Adaptors

• Device adaptors act as an interface between the target board and

emulator POD.

• Device adaptors are compatible sockets which can be

inserted/plugged into the target board for routing the various

signals from the pins assigned for the target processor. The device

adaptor is usually connected to the emulator POD using ribbon

cables.

@ McGraw-Hill Education

68

The device adaptor is usually connected to the emulator POD using ribbon cables.

• This type of emulators usually combines the entire emulation

control logic and emulation device (if present) in a single board.

They are known as ‘Debug Board Modules.

• Emulator hardware is partitioned into two, namely, ‘Base

Terminal’ and ‘Probe Card’.

• The Base terminal contains all the emulator hardware and

emulation control logic.

• The ‘Probe Card’ board contains the device adaptor sockets to

plug the board into the target development board.

• The board containing the emulation chip is known as the ‘Probe

Card’

@ McGraw-Hill Education

69

On Chip Firmware Debugging (OCD)

• Today almost all processors/controllers incorporate built in debug

modules called On Chip Debug (OCD) support.

• Though OCD adds silicon complexity and cost factor, from a

developer perspective it is a very good feature supporting fast and

efficient firmware debugging.

• BDM and JTAG are the two commonly used interfaces to

communicate between the Debug application running on

Development PC and OCD module of target CPU.

@ McGraw-Hill Education

70

The signal lines of JTAG protocol are

• Test Data In (TDI): It is used for sending debug commands

serially from remote debugger to the target processor.

• Test Data Out (TDO): Transmit debug response to the remote

debugger from target CPU.

• Test Clock (TCK): Synchronizes the serial data transfer.

• Test Mode Select (TMS): Sets the mode of testing.

• Test Reset (TRST): It is an optional signal line used for resetting

the target CPU

