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Module3 : Hardware Software Co design and Program Modelling 

 
Hardware Software Co-Design 

 
 In the traditional embedded system development approach, the hardware software 

partitioning is done at an early stage. 

 Engineers from the software group take care of the software architecture development and 

implementation, whereas engineers from the hardware group are responsible for building 

the hardware required for the product. 

 There is less interaction between the two teams and the development happens either 

serially or in parallel. 

 Once the hardware and software are ready, the integration is performed. 

 The increasing competition in the commercial market and need for reduced 'time-to- 

market' the product calls for a novel approach for embedded system design in which the 

hardware and software are co-developed instead of independently developing both. 

 During the co-design process, the product requirements captured from the customer are 

converted into system level needs or processing requirements. At this point of time it is 

not segregated as either hardware requirement or software requirement, instead it is 

specified as functional requirement. 

 The system level processing requirements are then transferred into functions which can be 

simulated and verified against performance and functionality. 

 The Architecture design follows the system design. 

• The partition of system level processing requirements into hardware and software 

takes place during the architecture design phase. 

• Each system level processing requirement is mapped as either hardware and/or 

software requirement. 

• The partitioning is performed based on the hardware-software trade-offs. 

 The architectural design results in the detailed behavioural description of the hardware 

requirement and the definition of the software required for the hardware. 

 The processing requirement behaviour is usually captured using computational models. 

 The models representing the software processing requirements are translated into 

firmware implementation using programming languages. 
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Fundamental Issues in Hardware Software Co-Design 

 
 The fundamental issues in hardware software co-design are: 

 Selecting the Model 

 Selecting the Architecture 

 Selecting the Language 

 Partitioning System Requirements into Hardware and Software 

Selecting the Model 

 In hardware software co-design, models are used for capturing and describing the system 

characteristics. 

 A model is a formal system consisting of objects and composition rules. 

 It is hard to make a decision on which model should be followed in a particular system 

design. 

 Most often designers switch between a variety of models from the requirements 

specification to the implementation aspect of the system design. 

 The reason being, the objective varies with each phase. 

 For example, at the specification stage, only the functionality of the system is in 

focus and not the implementation information. 

 When the design moves to the implementation aspect, the information about the 

system components is revealed and the designer has to switch to a model capable 

of capturing the system's structure. 

 
Selecting the Architecture 

 
 A model only captures the system characteristics and does not provide information on 

'how the system can be manufactured?’. 

 The architecture specifies how a system is going to implement in terms of the number and 

types of different components and the interconnection among them. 

 The commonly used architectures in system design are Controller Architecture, Datapath 

Architecture, Complex Instruction Set Computing (CISC), Reduced Instruction Set 

Computing (RISC), Very Long Instruction Word Computing (VLIW), Single Instruction 

Multiple Data (SIMD), Multiple Instruction Multiple Data (MIMD), etc. 

 Some of them fall into Application Specific Architecture Class (like controller 

architecture), while others fall into either general purpose architecture class (CISC, 

RISC, etc.) or Parallel processing class (like VLIW, SIMD, MIMD, etc.). 

 
Selecting the Language 

 
 A programming language captures a 'Computational Model' and maps it into architecture. 

 There is no hard and fast rule to specify this language should be used for capturing this 

model. 
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 A model can be captured using multiple programming languages like C, C++, C#, Java, 

etc. for software implementations and languages like VHDL, System C, Verilog, etc. for 

hardware implementations. 

 On the other hand, a single language can be used for capturing a variety of models. 

 Certain languages are good in capturing certain computational model. 

 For example, C++ is a good candidate for capturing an object oriented model. 

 The only pre-requisite in selecting a programming language for capturing a model is that 

the language should capture the model easily. 

 
 

Partitioning System Requirements into Hardware and Software 

 
 From an implementation perspective, it may be possible to implement the system 

requirements in either hardware or software (firmware). 

 It is a tough decision making task to figure out which one to opt. 

 Various hardware software trade-offs are used for making a decision on the hardware- 

software partitioning. 

 

Computational Models in Embedded Design 

 
 The commonly used computational models in embedded system design are: 

 Data Flow Graph Model 

 Control Data Flow Graph Model 

 State Machine Model 

 Sequential Program Model 

 Concurrent/Communicating Process Model 

 Object-Oriented Model 

 
Data Flow Graph/Diagram (DFG) Model 

 
 The Data Flow Graph (DFG) model translates the data processing requirements into a 

data flow graph. 

 It is a data driven model in which the program execution is determined by data. 

 This model emphasises on the data and operations on the data which transforms the input 

data to output data. 

 Embedded applications which are computational intensive and data driven are modelled 

using the DFG model. 

 DSP applications are typical examples for it. 

 Data Flow Graph (DFG) is a visual model in which the operation on the data (process) is 

represented using a block (circle) and data flow is represented using arrows. 

 An inward arrow to the process (circle) represents input data and an outward arrow from 

the process (circle) represents output data in DFG notation. 

 Suppose one of the functions in our application contains the computational requirement 

𝑥 = 𝑎 + 𝑏 and 𝑦 = 𝑥 − 𝑐. 
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 Figure illustrates the implementation of a DFG model for implementing these 

requirements. 

 
 

 
 In a DFG model, a data path is the data flow path from input to output. 

 A DFG model is said to be acyclic DFG (ADFG) if it doesn't contain multiple values for 

the input variable and multiple output values for a given set of input(s). 

 Feedback inputs (Output is fed back to Input), events, etc. are examples for non- 

acyclic inputs. 

 A DFG model translates the program as a single sequential process execution. 

 
Control Data Flow Graph/Diagram (CDFG) Model 

 
 The DFG model is a data driven model in which the execution is controlled by data and it 

doesn't involve any control operations (conditionals). 

 The Control DFG (CDFG) model is used for modelling applications involving conditional 

program execution. 

 CDFG models contains both data operations and control operations. The CDFG uses 

Data Flow Graph (DFG) as element and conditional (constructs) as decision makers. 

 CDFG contains both data flow nodes and decision nodes, whereas DFG contains only 

data flow nodes. 

 Consider the implementation of the CDFG for the following requirement. 

 𝐼𝑓 𝑓𝑙𝑎𝑔 = 1, 𝑥 = 𝑎 + 𝑏; 𝑒𝑙𝑠𝑒 𝑦 = 𝑎 − 𝑏; 

 This requirement contains a decision making process. 

 The CDFG model for the same is given in the figure. 

 The control node is represented by a 'Diamond' block which is the decision making 

element in a normal flow chart based design. 

 CDFG translates the requirement, which is modelled to a concurrent process model. 

 The decision on which process is to be executed is determined by the control node. 
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 A real world example for modelling the embedded application using CDFG is capturing 

and saving of the image to a format set by the user in a digital still camera. 

 The decision on, in which format the image is stored (formats like JPEG, TIFF, BMP, 

etc.) is controlled by the camera settings, configured by the user. 

 
State Machine Model 

 
 The State Machine Model is used for modelling reactive or event-driven embedded systems 

whose processing behaviour are dependent on state transitions. 

 Embedded systems used in the control and industrial applications are typical 

examples for event driven systems. 

 The State Machine model describes the system behaviour with 'States', 'Events', 'Actions' 

and 'Transitions’. 

 State is a representation of a current situation. 

 An event is an input to the state. 

 The event acts as stimuli for state transition. 

 Transition is the movement from one state to another. 

 Action is an activity to be performed by the state machine. 

 
Finite State Machine (FSM) Model 

 
 A Finite State Machine (FSM) model is one in which the number of states are finite. 

 The system is described using a finite number of possible states. 

 As an example, let us consider the design of an embedded system for driver/passenger 

'Seat Belt Warning' in an automotive using the FSM model. 

 The system requirements are captured as. 

 When the vehicle ignition is turned on and the seat belt is not fastened within 10 

seconds of ignition ON, the system generates an alarm signal for 5 seconds. 
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 The Alarm is turned off when the alarm time (5 seconds) expires or if the 

driver/passenger fastens the belt or if the ignition switch is turned off, whichever 

happens first. 

 
 Here the states are 

 'Alarm Off’ 

 'Waiting’ 

 'Alarm On’ 

 The events are 

 'Ignition Key ON’ 

 'Ignition Key OFF’ 

 'Timer Expire’ 

 'Alarm Time Expire’ 

 'Seat Belt ON’ 

 Using the FSM, the system requirements can be modeled as given in figure. 

 

 The 'Ignition Key ON' event triggers the 10 second timer and transitions the state to 

'Waiting’. 

 If a Seat Belt ON’ or 'Ignition Key OFF' event occurs during the wait state, the state 

transitions into 'Alarm Off’. 

 When the wait timer expires in the waiting state, the event 'Timer Expire' is generated and 

it transitions the state to 'Alarm On' from the 'Waiting' state. 

 The 'Alarm On' state continues until a 'Seat Belt ON' or 'Ignition Key OFF' event or 

'Alarm Time Expire' event, whichever occurs first. 

 The occurrence of any of these events transitions the state to 'Alarm Off’. 

 
 The wait state is implemented using a timer. 

 The timer also has certain set of states and events for state transitions. 

 Using the FSM model, the timer can be modelled as shown in the figure. 
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 As seen from the FSM, the timer state can be either 'IDLE' or 'READY' or 'RUNNING’. 

 During the normal condition when the timer is not running, it is said to be in the 'IDLE' 

state. 

 The timer is said to be in the 'READY’ state when the timer is loaded with the count 

corresponding to the required time delay. 

 The timer remains in the 'READY' state until a 'Start Timer' event occurs. 

 The timer changes its state to 'RUNNING' from the 'READY' state on receiving a 'Start 

Timer' event and remains in the 'RUNNING' state until the timer count expires or a 'Stop 

Timer' even occurs. 

 The timer state changes to 'IDLE' from 'RUNNING' on receiving a 'Stop Timer' or 'Timer 

Expire' event. 

 
FSM Model – Example 1 

 
 Design an automatic tea/coffee vending machine based on FSM model for the following 

requirement. 

 The tea/coffee vending is initiated by user inserting a 5 rupee coin. 

 After inserting the coin, the user can either select 'Coffee' or 'Tea' or press 'Cancel' 

to cancel the order and take back the coin. 

Solution 

 
 The FSM Model contains four states namely, 

 'Wait for coin’ 

 'Wait for User Input’ 

 'Dispense Tea' 

 'Dispense Coffee' 
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 The event 'Insert Coin' (5 rupee coin insertion), transitions the state to 'Wait for User 

Input’. 

 The system stays in this state until a user input is received from the buttons 'Cancel', 'Tea' 

or 'Coffee' (Tea and Coffee are the drink select button). 

 If the event triggered in 'Wait State' is 'Cancel' button press, the coin is pushed out and the 

state transitions to 'Wait for Coin’. 

 If the event received in the 'Wait State' is either 'Tea' button press, or 'Coffee' button press, 

the state changes to 'Dispense Tea' and 'Dispense Coffee' respectively. 

 Once the coffee/tea vending is over, the respective states transition back to the 'Wait for 

Coin' state. 

 
FSM Model – Example 2 

 
 Design a coin operated public telephone unit based on FSM model for the following 

requirements. 

 The calling process is initiated by lifting the receiver (off-hook) of the telephone 

unit. 

 After lifting the phone the user needs to insert a 1 rupee coin to make the call. 

 If the line is busy, the coin is returned on placing the receiver back on the hook 

(on-hook). 

 If the line is through, the user is allowed to talk till 60 seconds and at the end of 

45th second, prompt for inserting another 1 rupee coin for continuing the call is 

initiated. 

 If the user doesn't insert another 1 rupee coin, the call is terminated on completing 

the 60 seconds time slot. 

 The system is ready to accept new call request when the receiver is placed back on 

the hook (on-hook). 

 The system goes to the 'Out of Order' state when there is a line fault. 
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Sequential Program Model 

 
 In the Sequential Program Model, the functions or processing requirements are executed 

in sequence. 

 It is same as the conventional procedural programming. 

 Here the program instructions are iterated and executed conditionally and the data gets 

transformed through a series of operations. 

 Finite State Machines (FSMs) and Flow Charts are used for modelling sequential program. 

 The FSM approach represents the states, events, transitions and actions, whereas 

the Flow Chart models the execution flow. 

 The execution of functions in a sequential program model for the 'Seat Belt Warning' 

system is illustrated below: 

 

 Sequential Program Model for Seat Belt Warning System 
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Concurrent/Communicating Process Model 

 
 The concurrent or communicating process model models concurrently executing 

tasks/processes. 

 It is easier to implement certain requirements in concurrent processing model than the 

conventional sequential execution. 

 Sequential execution leads to a single sequential execution of task and thereby leads 

to poor processor utilisation, when the task involves I/O waiting, sleeping for 

specified duration etc. 

 If the task is split into multiple subtasks, it is possible to tackle the CPU usage 

effectively by switching the task execution, when the subtask under execution goes 

to a wait or sleep mode. 

 However, concurrent processing model requires additional overheads in task scheduling, 

task synchronization and communication. 

 As an example, consider the implementation of the 'Seat Belt Warning' system using 

concurrent processing model. 

 We can split the tasks into: 

 Timer task for waiting 10 seconds (wait timer task) 

 Task for checking the ignition key status (ignition key status monitoring task) 

 Task for checking the seat belt status (seat belt status monitoring task) 

 Task for starting and stopping the alarm (alarm control task) 

 Alarm timer task for waiting 5 seconds (alarm timer task) 
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 The tasks cannot be executed them randomly or sequentially. 

 We need to synchronize their execution through some mechanism. 
 
 

 
Object-Oriented Model 

 
 The object-oriented model is an object based model for modelling system requirements. 

 It disseminates a complex software requirement into simple well defined pieces called 

objects. 

 Object-oriented model brings re-usability, maintainability and productivity in system 

design. 

 In the object-oriented modelling, object is an entity used for representing or modelling a 

particular piece of the system. 

 Each object is characterized by a set of unique behaviour and state. 

 A class is an abstract description of a set of objects and it can be considered as a 'blueprint' 

of an object. 

 A class represents the state of an object through member variables and object behaviour 

through member functions. 

 The member variables and member functions of a class can be private, public or protected. 

 Private member variables and functions are accessible only within the class, 

whereas public variables and functions are accessible within the class as well as 

outside the class. 

 The protected variables and functions are protected from external access. 

 However, classes derived from a parent class can also access the protected member 

functions and variables. 
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Embedded Hardware Design and Development: 
 ANALOG ELECTRONIC COMPONENTS 

 Resistors, capacitors, diodes, inductors, operational amplifiers (OpAmps), transistors, etc. are 

the commonly used analog electronic components in embedded hardware design. 

 A resistor limits the current flowing through a circuit.  

 Interfacing of LEDs, buzzer, etc. with the port pins of microcontroller through current 

limiting resistors is a typical example for the usage of resistors in embedded application.  

 Capacitors and inductors are used in signal filtering and resonating circuits.  

 Reset circuit implementation, matching circuits for RF designs, power supply decoupling, 

etc. are examples for the usage of capacitors in embedded hardware circuit.  

 Inductors are widely used for filtering the power supply from ripples and noise signals. 

Inductors with inductance value in the microhenry (µH) range are commonly used in 

embedded applications for filter and matching circuit implementation. 

 P-N Junction diode, Schottky diode, Zener diode, etc. are the commonly used diodes in 

embedded hardware circuits. 

 Transistors in embedded applications are used for either switching or amplification purpose. 

In switching application, the transistor is in either ON or OFF state. 

 Relay, buzzer and stepper motor driving circuits are examples for common emitter confi 

guration based driver circuit implementation using transistor 

 

DIGITAL ELECTRONIC COMPONENTS 

 Digital electronics deal with digital or discrete signals.  

 Microprocessors, Microcontrollers, and System on Chips (SoCs) work on digital principles. 

They interact with the rest of the world through digital I/O interfaces and process digital data. 

 Embedded systems employ various digital electronic circuits for ‘Glue logic’ 

implementation. 

  ‘Glue logic’ is the custom digital electronic circuitry required to achieve compatible 

interface between two different integrated circuit chips.  

 Address decoders, latches, encoders/ decoders, etc. are examples for glue logic circuits. 

Transistor Transistor Logic (TTL), Complementary Metal Oxide Semiconductor (CMOS) 

logic etc are some of the standards describing the electrical characteristics of digital signals in 

a digital system.  

 

Open Collector and Tri-State Output 

 Open collector is an I/O interface standard in digital system design.  

 The term ‘open collector’ is commonly used in conjunction with the output of an 

Integrated Circuit (IC) chip. 

  It facilitates the interfacing of IC output to other systems which operate at different 

voltage levels. 

  In the open collector configuration, the output line from an IC circuit is connected to the 

base of an NPN transistor. The collector of the transistor is left unconnected (floating) 

and the emitter is internally connected to the ground signal of IC. 

  Figure 8.1 illustrates an open collector output configuration. 

 The output signal of the IC is fed to the base of an open collector transistor. When the 

base drive to the transistor is ON and the collector is in open state, the o/p pin floats. 

This state is also known as ‘high impedance’ state.  

 Here the output is neither driven to logic ‘high’ nor logic ‘low’.  

 If a pull-up resistor is connected to the o/p pin, when the base drive is ON, the o/p pin 

becomes at logic 0 (0V).  

 With a pull-up resistor, if the base driver is 0, the o/p will be at logic high (Voltage = 
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Vcc). 

                       
 

The advantage of open collector output in embedded system design is listed below. 

 (1) It eliminates the need for additional interface circuits for connecting devices at 

different voltage levels. 

 (2) An open collector configuration supports multi-drop connection, i.e., connecting 

more than one open collector output to a single line.  

(3) It is easy to build ‘Wired AND’ and ‘Wired OR’ configuration using open collector 

output lines. 

 

Logic Gates 

 Logic gates are the building blocks of digital circuits.  

 Logic gates control the flow of digital information by performing a logical operation of 

the input signals.  

 Depending on the logical operation, the logic gates used in digital design are classified 

into–AND, OR, XOR, NOT, NAND, NOR and XNOR.  

 The logical relationship between the output signal and the input signals for a logic gate is 

represented using a truth table. Figure 8.2 illustrates the truth table and symbolic 

representation of each logic gate 
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Buffer 

 A buffer circuit is a logic circuit for amplifying the current or power. 

  It increases the driving capability of a logic circuit. 

  A tri-state buffer is a buffer with Output Enable control. When the Output Enable 

control is active (Low for Active low enable and High for Active high enable), the tri-

state buffer functions as a buffer. 

  If the Output Enable is not active, the output of the buffer remains at high impedance 

state (Tri-stated).  

 Tristate buffers are commonly used as drivers for address bus and to select the required 

device among multiple devices connected to a shared data bus.  

 Tri-state buffers are available as either unidirectional or bi-directional buffers. 

74LS244/74HC244 is an example of unidirectional octal buffer. 

  It contains 8 individual buffers which are grouped into two. Each buffer group has its 

own output enable line. 

  Figure 8.3 illustrates the 74LS244 buffer device.  

 IC 74LS245 is an example of bi-directional tri-state buffer. It allows data flow in both 

directions, one at a time. 

  The data fl ow direction can be set by the direction control line. One buffer is allocated 

for the data line associated with each direction. 

  Figure 8.4 illustrates the 74LS245 octal bi-directional buffer. 

 

 

                                     
 

Latch 

 A latch is used for storing binary data. 

  It contains an input data line, clock or gating control line for triggering the latching 

operation and an output line. 

  The gating signal can be either a positive edge (raising edge) or a negative edge (falling 

edge).  

 Whenever a latch trigger happens, the data present on the input line is latched. 

  The latched data is available on the output line of the latch until the next trigger.  

 D flip flop is a typical example of a latch. 

 Latches are available as integrated circuits, IC 74LS373 being a typical example. 

  It contains 8 individual D latches. The 74LS373 latch IC (Fig. 8.5) is commonly used 

for latching the lower order address byte in a multiplexed address data bus system.  

 The Address Latch Enable (ALE) pulse generated by the processor, when the Address 

bits are available on the multiplexed bus, is used as the latch trigger. 

  Figure 8.6 illustrates the usage of latches in address latching. 
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Decoder 
 

 A decoder is a logic circuit which generates all the possible combinations of the input 

signals.  

 Examples are 2 to 4 decoder, 3 to 8 decoder and 4 to 16 decoder. 

  The 3 to 8 decoder contains 3 input signal lines and it is possible to have 8 different 

configurations with the 3 lines. 

 Depending on the input signal, the corresponding output line is asserted.  

 For example, for the input state 001, the output line 2 is asserted. 

  Decoders are mainly used for address decoding and chip select signal generation in 

electronic circuits and are available as integrated circuits.  

 74LS138/74AHC138 is an example for 3 to 8 decoder IC. 

  Figure 8.7 illustrates the 74AHC138 decoder and the function table for it. 

 The decoder output is enabled only when the ‘Output Enable’ signal lines E1\, E2\ and 

E3 are at logic levels 0, 0 and 1 respectively. 

  If the output-enable signals are not at the required logic state, all the output lines are 

forced to the inactive (High) state.  
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Encoder 
 

 An encoder performs the reverse operation of decoder.  

 The encoder encodes the corresponding input state to a particular output format. 

 The 8 to 3 encoder contains 8 input signal lines and it is possible to generate a 3 bit 

binary output corresponding to the input. 

 For example, if the input line 1 is asserted, the output lines A0, A1 and A2 are asserted 

as 0, 1 and 1 respectively.  

 Encoders are mainly used for address decoding and chip select signal generation.  

 74F148/74LS148 is an example of 8 to 3 encoder IC. 

  Figure 8.8 illustrates the 74F148/74LS148 encoder and the function table for it 

 The encoder output is enabled only when the ‘Enable Input (EI)’ signal line is at logic 0. 

 A ‘High’ on the Enable Input (EI) forces all outputs to the inactive (High) state and 

allows new data to settle without producing erroneous information at the outputs. 

  The group signal (GS) is active-Low when any input is Low.  

 74LS148/74F148 is a priority encoder and it provides priority encoding of the inputs to 

ensure that only the highest order data line is encoded when multiple data lines are 

asserted. 

 Encoding of keypress in a keyboard is a typical example for an application requiring 

encoder. The encoder converts each keypress to a binary code 

             
 

Multiplexer (MUX) 

 A multiplexer (MUX) can be considered as a digital switch which connects one input 

line from a set of input lines, to an output line at a given point of time.  

 It contains multiple input lines and a single output line.  

 The inputs of a MUX are said to be multiplexed. The input line is selected through the 

MUX control lines.  

 74S151 is an example for 8 to 1 multiplexer IC. 

  Figure 8.9 illustrates the 74S151 multiplexer and the function table for it.  

 The multiplexer is enabled only when the ‘Enable signal (EN)’ line is at logic 0.  

 A ‘High’ on the EN line forces the output to the inactive (Low) state.  

 The input signal is switched to the output line through the channel select control lines 

A2, A1 and A0.  

 In order to select a particular input line, apply its binary equivalent to the channel select 

lines A0, A1 and A2 (e.g. set A2A1A0 as 000 for selecting Input D0, and as 001 for 

selecting channel D1, etc.) 
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De-multiplexer (D-MUX) 

 A de-multiplexer performs the reverse operation of multiplexer.  

 De-multiplexer switches the input signal to the selected output line among a number of 

output lines.  

 The output line to which the input is to be switched is selected by the output selector 

control lines.  

 The 1 to 2 de-multiplexer, NL7SZ18 is a typical example for 1 to 2 de-multiplexer IC. 

  It contains a single input line and two output lines to switch the input line. 

  The output switching is controlled by the output selector control.  

 When one output line is selected by the output selector control (S), the other output line 

remains in the High impedance state. 

 Figure 8.10 illustrates the NL7SZ18 de-multiplexer and the function table for it.  

 

 
 

Combinational Circuits 

 A combinational circuit is a combination of the logic gates.  

 The output of the combinational circuit, at a given point of time, is dependent only on 

the state of the inputs at the given point of time.  

 Encoders, decoders, multiplexers, de-multiplexers, adder circuits, comparators, multiple 

input gates, etc. are examples of digital combinational circuits.  

 In digital system design, logical functions representing a combinational circuit are 

expressed as either ‘Sum of Products (SOP)’ or ‘Product of Sums (POS)’ form. 

  The SOP form represents the logic as the sum of the products of the logical variables 

whereas the POS form represents the logic as the product of sums of the logical variable. 
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 The expression is an example for SOP form representation of the 

logical function. Here Y is the output signal and A, B and C are the input signals. 

  The expression Y = (A+B) (B+C) (A+C) is an example for POS form representation of 

the logical function. Here Y is the output signal and A, B and C are the input signals. 

 ‘Karnaugh map’ or K-map is the easiest logic simplification technique.  

 Now let us try to implement a 2 input half adder combinational circuit, for adding two 

one-bit numbers, using the K-map technique. 

  The ‘Truth Table’ and the corresponding K-map drawing* for the 2 input ‘half adder’ 

circuit is given below. 

 

 

 
 

Sequential Circuits 

 In sequential circuits, output at any given point of time depends on both the present and 

past inputs. 

  Hence, sequential circuits contain a memory element for holding the previous input 

states.  

 Flip-flops act as the basic building blocks of sequential circuits. 

  Sequential circuits are of two types, namely–synchronous (clocked) sequential circuits 

and asynchronous sequential circuits.  
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 The operation of a synchronous sequential circuit is synchronized to a clock signal, 

whereas an asynchronous sequential circuit does not require a clock for operation.  

 For an asynchronous sequential circuit, the response depends upon the sequence in 

which the input signal changes.  

 The memory capability to asynchronous sequential circuit is provided through feedback. 

 Register, synchronous counters, etc. are examples of synchronous serial circuits, 

  Ripple or asynchronous counter is an example for asynchronous sequential circuits. 
 

 
 

S-R flipflop 

 The S-R flip-flop is built using 2 NOR gates.  

 The output of each NOR gate is fed back as input to the other NOR gate.  

 This ensures that if the output of one NOR gate is at logic 1, the output of the other NOR 

gate will be at logic 0. 

  The S-R flip-flop works in the following way. 
 (1) If the Set input (S) is at logic high and Reset input (R) is at logic low, the output 

remains at logic high regardless of the previous output state.  
(2) If the Set input (S) is at logic low and Reset input (R) is at logic high, the output 

remains at logic low regardless of the previous output state.  
(3) If both the Set input (S) and Reset input (R) are at logic low, the output remains at the 

previous logic state.  
(4) The condition Set input (S) = Reset input (R) = Logic high (1) will lead to race 

condition and the state of the circuit becomes undefined or indeterminate (x). 

 A clock signal can be used for triggering the state change of flip-flops.  

 The clock signal can be either level triggered or edge triggered.  

 For level triggered flip-flops, the output responds to any changes in input signal, if the 

clock signal is active. 

 For edge triggered flip-flops, the output state changes only when a clock trigger happens 

regardless of the changes in the input signal state. 
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Clocked S-R flip-flop 

 The clocked S-R flip-flop functions in the same way as that of S-R flip-flop.  

 The only difference is that the output state changes only with a clock trigger.  

 Even though there is a change in the input state, the output remains unchanged until the 

next clock trigger.  

 When a clock trigger occurs, the output state changes in accordance with the values of S 

and R at the time of the clock trigger. 

 

 
 

J-K flip-flop 

 The J-K flip-flop augments the behavior of S-R flip by interpreting the input state S=R=1 

as a toggle command.  

 The logic circuit and the I/O states for a J-K flip-flop are given in Fig. below 
 

It is clear that for a J-K flip-flop, S = JQ\ and R = KQ.  

The J-K flip-flop operates in the following way: 

 (1) When J = 1 and K = 0, the output remains in the set state. 

 (2) When J = 0 and K = 1, the output remains in the reset state. 

 (3) When J = K = 0, the output remains at the previous logic state.  

 (4) When J = 1 and K = 1, the output toggles its state 

 

 
 

D-type (Delay) flip-flop 

 A D-type (Delay) flip-flop is formed by connecting a NOT gate in between the S and R 

inputs of an S-R flip-flop or by connecting a NOT gate between the J and K inputs of a J-

K flip-flop.  

 Figure 8.18 illustrates a D-type flip-flop and its I/O states. 

 This flip-flop is known with the so-called name ‘Delay’ flip-flop for the following reason–

the input to the flip-flop appears at the output at the end of the clock pulse (for falling 

edge triggering). 
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Toggle flip-flop or T flip-flop 

 A Toggle flip-flop or T flip-flop is formed by combining the J and K inputs of a J-K 

flipflop. 

 When the ‘T’ input is held at logic 1, the T flip-flop toggles the output with each clock 

signal.  
Figure 8.19 illustrates a T flip-flop and its I/O states. 

 

 
 

 An S-R flip-flop cannot be converted to a ‘T’ flipflop by combining the inputs S and R. 

The logic state S=R=1 is not defined in the S-R flip-flop. However, an S-R flip-flop can 

be configured for toggling the output with the circuit configuration shown in Fig. 8.20. 
 

 Synchronous sequential circuit 

 Uses clocked flip-flops (S-R, J-K, D, T etc.) as memory elements and a ‘state’ change 

occurs only in response to a synchronizing clock signal.  

 The clock signal is common to all flip-flops and the clock pulse is applied simultaneously 

to all flip-flops. 

 Example 1 for synchronous sequential circuit, let us consider the design of a synchronous 

3-bit binary counter. The counting sequence for a 3-bit binary counter is given below. 

 
 From the count sequence, it is clear that the LS bit (Q0) of the binary counter toggles on 

each count and the next LS bit (Q1) toggles only when the LS bit (Q0) makes a transition 

from 1 to 0.  

 The Bit (Q2) of the binary counter toggles its state only when the Q1 bit and Q0 bits are 

at logic 1.  
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 This logic circuit can be realized with 3 T flip-flops satisfying the following criteria: 
 (1) All the T flip-flops are driven simultaneously by a single clock (synchronous design). 

(2) The output of the T flip-flop representing the Q0 bit is initially set at 0. The input line 

of Q0 flip-flop is connected to logic 1 to ensure toggling of the output with input clock 

signal.  

(3) Since Q1 bit changes only when Q0 makes a transition from 1 to 0, the output of the 

T flip-flop representing Q0 is fed as input to the T flip-flop representing the Q1 bit. 

 (4) The output bit Q2 changes only when Q0 = Q1 = 1. Hence the input to the flip-flop 

representing bit Q2 is fed by logically ANDing Q0 and Q1. 

 

 
 The Preset line is used for setting the output of flip-flop, whereas the Clear line is used for 

resetting the output of flip-flops. 
 Example 2:  

 A register can be considered as a group of bits holding information.  

 A D flip-flop can be used for holding a ‘bit’ information.  

 The bit storing operation is controlled by the signal associated with a latch write 

(like a write to latch pulse).  

 The figure given below illustrates the implementation of a 4 bit register using D 

flip-flops. 
 

 
 

Asynchronous sequential circuit 

 The state of an asynchronous sequential circuit changes instantaneously with changes in 

input signal state. 

  The asynchronous sequential circuit does not require a synchronizing clock signal for 

its operation.  

 The memory element of an asynchronous sequential circuit can be either an un-clocked 

flip-flop or logical gate circuits with feedback loops for latching the state. 
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 Example 
 3-bit binary counter using an asynchronous sequential circuit.  

 From the count sequence of the 3-bit binary counter, it is clear that the least significant 

(LS) bit (Q0) of the binary counter toggles on each count and the next LS bit (Q1) 

toggles only when the LS bit (Q0) makes a transition from 1 to 0.  

 The most significant (MS) Bit (Q2) of the binary counter toggles its state only when the 

Q1 bit makes a transition from 1 to 0.  

 This logic circuit can be realized with 3 T flip-flops satisfying the following criteria: 
 (1) The T input of all flip-flops are connected to logic high (it is essential for the 

toggling condition of the T Flip-flop). 
(2) The pulse for counting is applied to the clock input of the first T flip-flop 

representing the LS bit Q0. 
(3) The clock to the T flip-flop representing bit Q1 is supplied by the output of the T 

flip-flop representing bit Q0. This ensures that the output of Q1 toggles only when 

the output of Q0 transitions from 1 to 0.  
(4) The clock to the T flip-flop representing bit Q2 is supplied by the output of the T 

flip-flop representing bit Q1. This ensures that the output of Q2 toggles only when 

the output of Q1 transitions from 1 to 0.  
The circuit realization of the 3-bit binary counter using 3 T flip-flops in an 

asynchronous sequential circuit is given below. 

 The Preset line is used for setting the output of flip-flop, whereas the Clear line 

is used for resetting the output of flip-flops. 

  Here the input line (T) of all flip-flops is tied to logic 1 permanently.  

 

 
The table given below summarizes the characteristics, pros and cons of 

synchronous and asynchronous sequential circuits 
Synchronous sequential circuits Asynchronous sequential circuits 
Clocked flip-flops act as the 

memory element in the circuit. All 

flip-fl ops are clocked to the same 

clock signal. 

Un-clocked flip-flops or logic gate 

circuits with feedback loops act as 

the memory element in the circuit. 

The output state of the circuit 

changes only with clock trigger. 
The output state change happens 

instantaneously with changes in 

input state 
The speed of operation depends on 

the maximum supported clock 

frequency. 

Faster than synchronous sequential 

circuits. 

Speed is less speed of operation is high 
Costlier compared to asynchronous cheaper 
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VLSI AND INTEGRATED CIRCUIT DESIGN 

 The first integrated circuit was designed in the 1950s. Depending on the number of 

integrated components, the degree of integration within an integrated circuit (IC) is 

known as:  

 Small-Scale Integra on (SSI) Integrates one or two logic gate(s) per IC, e.g. LS7400 

 Medium-Scale Integra on (MSI) Integrates up to 100 logic gates in an IC. The decade 

Counter 7490 is an example for MSI device 

  Large-Scale Integra on (LSI) Integrates more than 1000 logic gates in an IC  

 Very Large-Scale Integra on (VLSI) Integrates millions of logic gates in an IC. 

Pentium processor is an example of a VLSI Device 

 
Depending on the type of circuits integrated in the IC, the IC design is categorised as: 

• Digital Design: Deals with the design of integrated circuits handling digital signals and data. 

Example- Microprocessor/microcontroller, memory 

• Analog Design: Deals with the design of integrated circuits handling analog signals and data 

Example- RF IC design, Op-Amp design, voltage regulator IC design. 

• Mixed Signal Design: Mixed signal design involves design of ICs, which handle both digital 

and analog signals as well as data. Design of an analog-to-digital converter is an example for 

mixed signal IC design 

 

VHDL for VLSI Design 

 Very High Speed Integrated Circuit HDL or VHDL is a hardware description language 

used in VLSI design.  

 VHDL is a technology independent description, which enables creation of designs 

targeted for a chosen technology (like CPLD, FPGA, etc.) using synthesis tools. This 

enables one keep up with the fast development of semiconductor technology.  

 VHDL can be used for describing the functionality and behavior of the system (Behavioral 

representation), or describing the actual gate and register levels of the system [ Register 

Transfer Level ( RTL) representation].  

 VHDL supports concurrent, sequential, hierarchical and timing modelling.  

 VHDL also possess certain set of rules and characteristics. The following table gives a 

snapshot of the important rules and characteristics specific to VHDL 

 
 

 
  

 

 



INTRODUCTION TO EMBEDDED SYSTEMS |   M O D U L E 3 : 

Hardware Software Co design and Program Modelling 
 

 

 

 

 

 

 
  

 
 

 The basic structure of a VHDL design consists of an entity, architecture and signals.  

 The entity declaration defines the name of the function being modelled and its interface ports to the 

outside world, their direction and type.  

The basic syntax for an entity declaration is given below 
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 The architecture describes the internal structure and behavior of the model. 

The basic syntax for an architecture declaration is given below 
 

 
 
The library and packages must be specified in the VHDL code as 

 
 

Figure 8.25 illustrates the various steps involved in a HDL based design. 

 

 

 
 

ELECTRONIC DESIGN AUTOMATION (EDA) TOOLS 

 

 The designers built the PCB with their hands, oil paper, pencil, pen, ruler and copper plates. 

 The more the inter connections involved in the hardware, the more difficult was the process. 

 Advances in computer technology and IT brought out highly sophisticated and automated tools for PCB 

design and fabrication. 

  The process of manual sketching the PCB has given way to software packages that gives an automatic 

routing and layout for your product in a few seconds.  

 These software packages are widely known as Electronic Design Automation ( EDA) tools.  

 EDA tool is a set of Computer Aided Design/Manufacturing (CAD/CAM) software packages which 

helps in designing and manufacturing the electronic hardware like integrated circuits, printed circuit 

board, etc.  
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